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 ABSTRACT 

 

Predicting seasonal patterns of California cetacean density based on remotely sensed 
environmental data 

 

by 

 

Elizabeth Ann Becker 

 

 Temporal and spatial variability in species distribution and abundance is a 

major source of uncertainty in ecological research and marine resource management.  

This is particularly important in dynamic systems like the California Current, a 

region defined by high variability at multiple temporal and spatial scales.  This 

dissertation focuses on the quantitative analysis of the seasonal distribution patterns 

of California cetaceans.  Chapter One provides an introduction to the study area, the 

research questions, and the analytical methods.  In Chapter Two, I reanalyzed aerial 

survey data collected in central and northern California from 1980 to 1983 using 

more recent, advanced line-transect methods to estimate cetacean densities.  The 

revised estimates allowed for a quantitative examination of seasonal and interannual 

patterns of cetacean abundance for 1980-83, and a statistical comparison of spring 

abundance between the early 1980s and the 1990s.  While significant inter-decadal 

differences in spring abundance were evident for only one of the five species 

analyzed, the revised 1980-83 abundance estimates reveal variability in both 
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seasonal and interannual patterns for the majority of species considered.  In Chapter 

Three I developed generalized linear and generalized additive models to predict 

encounter rate, group size, and density for 10 cetacean species based on static and 

dynamic environmental variables.  Sighting data used for modeling were collected 

off California during four summer/fall surveys between 1991 and 2001.  I evaluated 

the predictive ability of models based on various temporal and spatial resolutions of 

remotely sensed sea surface temperature, and compared the performance of models 

built with remotely sensed vs. in situ environmental data.  Results indicate that, 

when sample size is sufficient, cetacean-habitat models developed using fairly 

coarse-scale satellite data have predictive ability that meets or exceeds models 

developed with analogous in situ data.  In Chapter Four I examined whether models 

built with data collected in the summer can be used in association with winter 

remotely sensed data to predict distribution patterns across seasons.   This approach 

inherently assumes that the range of interannual environmental variability overlaps 

that of seasonal environmental variability in the study region.  Changes in seasonal 

distribution patterns were captured effectively for three of the five species evaluated. 
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CHAPTER ONE 

 

INTRODUCTION AND BACKGROUND 

 

by 

Elizabeth A. Becker 

 

Introduction 

Ecology is the study of the distribution and abundance of organisms and how 

they relate to one another and their environment.  A fundamental goal of marine 

ecology is to understand the factors that determine the distribution patterns of marine 

species.  This presents unique challenges due to the dynamic nature of marine 

ecosystems (Mann and Lazier 2006).  Understanding how the environment affects 

species abundance and distribution also has practical management applications.  We 

need to understand the mechanisms determining marine species distributions in order 

to mitigate potential anthropogenic impacts.  Temporal and spatial variability in 

species distribution and abundance remains a major source of uncertainty in 

managing marine resources (Ralls and Taylor 2000).  This is particularly important 

in dynamic systems like the California Current, a region defined by high variability 

at multiple temporal and spatial scales (Hickey 1998).   

This dissertation focuses on the quantitative analysis of the seasonal 

distribution patterns of California cetaceans.  The following subsections describe 
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pertinent aspects of the study region, provide background information on the 

motivation for this research, and summarize information on the methods used and 

key studies leading up to this research.  In addition, a summary of the following 

chapters is provided.  This research has both ecological and management 

applications.  In addition, the results provide insight into modeling techniques that 

are applicable to other apex marine predators. 

 

Study Area 

The California Current is the eastern limb of the North Pacific gyre, the 

major anticyclonic gyre in the northern hemisphere (Figure 1.1).  The California 

Current is a near-surface (0-500 m), equatorward flow characterized by low 

temperatures, low salinities, and high dissolved oxygen levels originating from 

Pacific subarctic waters (Lynn and Simpson 1987).  The California Current extends 

from the continental shelf break to approximately 1,000 km off the California coast 

(Hickey 1998).  Except near the coast, the California Current carries water 

equatorward throughout the year.  Similar to other eastern boundary current systems, 

the California Current System is characterized by episodic upwelling events and 

corresponding high levels of primary productivity.  Increased primary productivity 

can be transferred via the food web to apex predators such as cetaceans (Ryther 

1969).  During spring and early summer, the prevailing winds along the North 

American coast are north-northwesterly, giving rise to upwelling events that bring 

relatively cold, saline, nutrient-rich, oxygen-deficient waters from depth to the 
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surface.  The driving force for these surface winds is the strength of the gradient 

between the continental thermal low over California and the North Pacific high-

pressure system (Hickey 1979, 1998).  The study area for this dissertation 

encompasses approximately 818,000 km2, extending from the California coast to 

about 556 km (300 nmi) offshore (Figure 1.2).    

The California Current System comprises several surface and subsurface 

currents that form dynamic relationships, contributing to seasonal and larger-scale 

variations in transport, upwelling patterns, and water characteristics (Hickey 1979, 

1998).  The poleward and equatorward flows included in this system are generally 

characterized as large-scale (> 500 km alongshore) currents.  Typically the 

California Current refers to the equatorward flow, the California Undercurrent refers 

to the poleward subsurface flow over the continental slope, and the Davidson 

Countercurrent (north of Point Conception) refers to a coastal poleward current 

(Pares-Sierra and O’Brien 1989).  South of Point Conception there is also an inshore 

surface flow typically called the Southern California Eddy during periods when the 

flow recirculates within the Southern California Bight (SCB) and the Southern 

California Countercurrent when the flow travels around Point Conception.  In this 

region, where there is an abrupt change in the angle of the coastline (Figure 1.2), 

circulation patterns and forcing mechanisms differ significantly from other areas on 

the U.S. West Coast (Hickey 1993; Winant et al. 2003; Dever 2004).  Surface 

circulation in the Santa Barbara Channel is particularly complex, exhibiting flow 

fluctuations at various spatial and temporal scales (Hendershott and Winant 1996; 
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Harms and Winant 1998).  Since 1950, large-scale hydrographic sampling of the 

California Current System has been conducted by the California Cooperative 

Oceanic Fisheries Investigations (CalCOFI), providing many of the data used to gain 

our current understanding of this dynamic system (e.g., Chelton et al. 1982; 

Hayward and Venrick 1998; Bograd and Lynn 2003) . 

 

Environmental variability in the study area 

The California Current System contains four different water masses, each 

defined by its temperature, salinity, nutrients, and dissolved oxygen at the time it 

enters the system.  In addition to upwelled water (generally relatively cold, saline, 

nutrient-rich, and oxygen-poor), the California Current System contains water that 

originated in the Pacific subarctic (low temperature, low salinity, high dissolved 

oxygen), the eastern central North Pacific (warm, saline, depleted nutrients, low 

dissolved oxygen), and the northeastern tropical Pacific (high temperature, high 

salinity, high nutrients, low dissolved oxygen) (Lynn and Simpson 1987).  Seasonal 

variations in water mass characteristics are determined by changes in transport and 

vertical adjustments in the density field, largely related to the seasonal migration of 

the North Pacific high-pressure system.  Seasonal and interannual variations in water 

mass characteristics and biological productivity have been documented (Roemmich 

and McGowan 1995). 

The structure of the California Current System and closely associated 

upwelling patterns is sensitive not only to seasonal and interannual changes but also 
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to longer-term climatic oscillations such as El Niño-Southern Oscillation (ENSO) 

events.  An ENSO event represents a disruption in the ocean-atmosphere system that 

results in the development of abnormally warm sea surface temperatures (SSTs) 

across the eastern tropical Pacific (Cane 1983; Fiedler et al. 1992).  Many studies 

have documented the severe reduction of primary productivity in the coastal 

northeastern Pacific as a result of ENSO events, resulting in part from a decrease in 

the quantity of limiting nutrients transported to the surface waters due to depression 

of the thermocline (Barber and Chavez 1983; Cane 1983; Fiedler et al. 1992; Kudela 

and Chavez 2002).   

In addition to documented declines in primary productivity associated with 

ENSO events, changes in the abundance and distribution of zooplankton, benthic 

invertebrates, fish, sea turtles, and seabirds have also been observed (Barber and 

Chavez 1983; Pearcy and Schoener 1987).  While population reductions are evident 

in many cases, other studies reveal considerable shifts in species distributions.  For 

example, during the very strong 1982-83 ENSO event, the ranges of many species 

extended northward into the mid-latitudes of the northeastern Pacific (Pearcy and 

Schoener 1987).  Because cetaceans are highly mobile, it is expected that an ENSO 

event would result in changes in local abundance and distribution patterns in 

response to the change in oceanographic conditions and the availability of prey.   

The opposite extreme of the Southern Oscillation cycle (i.e., a “La Niña” 

event) is generally characterized by cooler than average SSTs and high levels of 

sustained coastal upwelling off California (Schwing et al. 2000).  The oscillation 
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between El Niño and La Niña events is highly irregular but generally occurs every 3 

to 7 years.   

Multidecadal fluctuations have been shown to have basin-wide ecosystem 

effects similar to El Niño and La Niña but on a longer time scale (Chavez et al. 

2003).  The term Pacific Decadal Oscillation (PDO) is used to describe climate 

variability and ecosystem effects in the north Pacific that vary on time scales of 20 to 

30 years (Mantua et al. 1997).  A “regime shift” describes the rapid change between 

an eastern Pacific cool phase and a warm phase.  Regime shifts have been associated 

with major ecosystem changes in the California Current System, including changes 

in upper-ocean temperatures, upwelling strength, zooplankton biomass, fish 

recruitment, and salmon catch (Hare and Mantua 2000; McGowan et al. 2003).   

 

Research and management implications  

Environmental variability is evident in the California Current System at 

seasonal, interannual, ENSO, and decadal scales.  Environmental variability is 

increasingly recognized as an important source of uncertainty in marine stock 

assessment research and ecological studies concerning broad taxonomic groups 

including invertebrates, fish, seabirds, and marine mammals.  For example, decadal 

shifts in sardine and anchovy abundance have been linked to oceanographic 

variability in eastern boundary current regions (MacCall 1996; Chavez et al. 2003).  

Recently, numerous studies have attempted to identify relationships between 

commercially valuable marine species and environmental parameters to improve our 
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understanding of observed variation in interannual recruitment, year-class 

abundance, and longer-term population fluctuations (e.g., Pyper and Peterman 1999; 

Maravelias et al. 2000; Rosenkranz et al. 2001; Koslow et al. 2002; Chavez et al. 

2003).   Protected marine species, such as seabirds, marine mammals, sea turtles, and 

certain highly migratory fish, are also fundamentally affected by environmental 

variability, although the mechanisms by which this happens depend on each species’ 

life history. 

For short-lived species and species with high fecundity, environmental 

variability can have profound effects on population dynamics by influencing birth 

and death processes. Such biological effects are well known for ENSO events (e.g., 

Barber and Chavez 1983; Trillmich and Limberger 1985).  In contrast, long-lived, 

highly migratory species often respond to oceanographic variability by moving over 

large geographical distances to locate suitable habitats, rather than (or in addition to) 

responding through changes in survival and reproductive success (Ainley et al. 

1995a, b; Pyle et al. 1996; Forney and Barlow 1998; Sydeman and Allen 1999; 

Tynan 1999; Forney 2000; Benson et al. 2002).  Nevertheless, in the case of both 

population declines and geographic movement, the net effect for all marine species is 

an increase in the variability of measures used for stock assessment purposes 

(abundance, density, catch per unit effort, etc.) and a correspondingly low statistical 

power to detect trends (Gerrodette 1987; Peterman and Bradford 1987; Forney et al. 

1991; Edwards and Perkins 1992; Taylor and Gerrodette 1993; Forney 1999).  For 

example, Forney (2000) suggested that dramatic differences in the abundance 
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estimates of some California cetacean species were due to movement of the animals 

in and out of the study area in response to changing oceanographic conditions rather 

than actual population declines.  Abundance estimates for fixed geographic regions 

(e.g., California) may thus be based on a different proportion of the population in 

each year, introducing considerable variability into abundance time series, and 

causing uncertainty in marine stock assessments and ecological studies.   

For most cetacean species, abundance is estimated using line transect 

methods without allowance for direct measures of environmental variability 

(Burnham et al. 1980; Buckland et al. 2001). Recently, however, there has been 

increased recognition that incorporation of environmental variables can improve 

conventional estimation methods (Hedley et al. 1999; Forney 2000; Hedley and 

Buckland 2004; Ferguson et al. 2006; Gomez de Segura 2007).  Further, abundance 

estimates that incorporate oceanographic variability can improve trend analyses and 

increase the accuracy of stock assessments (Forney 1999, 2000).  Predictive 

cetacean-habitat models that incorporate oceanographic variability can improve our 

ability to identify cetacean distribution patterns at various spatial resolutions 

(Ferguson et al. 2006).  The need for effective predictive models of cetacean 

occurrence and distribution has become critical for marine resource managers who 

must select minimal-impact locations or seasons for an increasing number of human 

activities with potential to harm cetaceans (e.g., Navy test and training activities, 

seismic surveys, fisheries interactions, etc.).  In addition to management 

implications, understanding the causes and consequences of changes in the 
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abundance and distribution of populations is a fundamental goal of ecology and 

conservation biology.   

In order to assess the effects of oceanographic variability on cetacean 

abundance and distribution, environmental measures must be readily obtainable, 

ideally on a synoptic and repetitive basis, over broad ocean areas.  In addition, it is 

important to have access to data collected across years and seasons, in order to 

capture the range of seasonal and interannual environmental variability.  Shipboard 

surveys provide the most comprehensive species and oceanographic data, and the 

majority of modeling efforts concerning cetacean-environment relationships have 

used measures of oceanographic conditions collected from ships. A disadvantage of 

shipboard surveys is that they are expensive and time-consuming, so usually do not 

allow for repetitive surveys of large areas.  Off the California coast, the abundance 

of cetaceans has been estimated from 1991-2001 shipboard line-transect surveys 

conducted during the summer and fall (Barlow 2003).  Rough weather conditions 

make it difficult to collect shipboard line-transect data in winter and spring.  Many of 

the data that exist for these seasons have been collected during aerial surveys, which 

typically do not include the collection of complementary in situ oceanographic data.  

In this case, remote sensing can provide a comprehensive source of environmental 

data.   
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Cetacean-habitat Modeling Techniques 

Redfern et al. (2006) provide a review of cetacean-habitat modeling 

techniques, including topics such as the motivation for developing cetacean-habitat 

models, the importance of spatial and temporal scale, cetacean and environmental 

data collection procedures, and statistical modeling techniques.  Many of the 

statistical procedures now used for predictive habitat modeling evolved with the 

increased speed and power of computers; complex calculations are now commonly 

performed using computer-intensive methods in statistics (Diaconis and Efron 1983; 

Efron and Tibshirani 1991).   

 

Generalized linear and generalized additive models 

There has been a recent increase in the development of species-habitat 

distribution models using data collected from systematic surveys of cetaceans, as 

well as opportunistic sighting and historic whaling data.  Generalized linear models 

(GLMs; McCullagh and Nelder 1989) based on logistic regression have been used to 

relate cetacean presence/absence to environmental and geographic variables (Moses 

and Finn 1997; Waring et al. 2001; Davis et al. 2002; Baumgartner et al. 2003; 

Hamazaki 2002; Yen et al. 2004; Tynan et al. 2005).  Another form of GLM, 

Poisson regression, also has been used to relate the locations of cetacean groups to 

environmental data (Gregr and Trites 2001; Cañadas et al. 2002).  Analytical 

methods for producing density estimates from GLMs have been described (Hedley 
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and Buckland 2004), but to date no other studies have used GLMs to estimate 

absolute density or abundance. 

Although GLMs are still commonly used, there is a growing recognition that 

variability in species abundance might best be explained by nonparametric 

relationships with habitat gradients (Austin 2002; Oksanen and Minchin 2002), and 

there is growing acceptance of the use of generalized additive models (GAMs; 

Hastie and Tibshirani 1990) to quantitatively explore relationships between 

cetaceans and environmental variables.  Hedley et al. (1999) described analytical 

methods for applying GAMs to cetacean-habitat data collected from strip- and line-

transect surveys.  Forney (2000) used GAMs to relate cetacean encounter rates to 

environmental variables, and demonstrated that GAMs represent an effective tool for 

reducing uncertainty caused by environmental variability.  Results from this research 

also show, however, that models are only effective if the data they are based on 

capture a wide range of oceanographic variability.  For this reason, models should be 

constructed with multi-year data and cross-validation methods.   

Both Hedley et al. (1999) and Forney (2000) used cetacean group encounters 

as response variables in the models and did not incorporate potential variability in 

the size of the groups.  Group size is an important factor in estimating cetacean 

density, particularly for those species known to occur in highly variable group sizes 

(Buckland et al. 2001).  Hedley and Buckland (2004) described methods for creating 

spatial models of group size in order to estimate population density.  Ferguson et al. 

(2006) developed separate encounter rate and group size GAMs to produce density 
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estimates for cetaceans in the eastern tropical Pacific.  Cetacean abundance estimates 

derived from GAMs were used in a study that compared estimates from the spatial 

models to those made using standard line-transect methods (Gomez de Segura et al. 

2007).     

The GAM-based framework is the current benchmark method for modeling 

cetacean density.  However, GAMs have been criticized for being difficult to 

interpret ecologically (Olivier and Wotherspoon 2005).  Further, there is a lack of 

comparative studies evaluating results of two or more statistical methods applied to 

the same data set (Guisan and Zimmermann 2000; Wilfried et al. 2003).  The 

majority of ecological studies that provide a direct comparison of GLMs and GAMs 

are found in the field of vegetation science (e.g., Franklin 1998; Wilfried et al. 

2003).  For this dissertation I developed both GLMs and GAMs to model the 

relationship between cetacean sighting data and oceanographic data, building on the 

modeling framework developed by Ferguson et al. (2006).  Results of the two 

approaches are compared.  

 

Models using remotely sensed oceanographic data 

Using remotely sensed data to study the distribution patterns of cetaceans is 

not a new idea.  More than 25 years ago, a conference was held in Santa Barbara, 

California, to address the use of remote sensing for studying and managing marine 

mammals (Botkin et al. 1981).  Scientists from the United States and England spent 

two days discussing 1) available techniques for using remote sensing to study marine 
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mammals, 2) why available techniques had not been fully utilized, 3) the role of 

marine mammals in marine systems, 4) why understanding their distribution patterns 

is significant from an ecological perspective, and 5) how remote sensing might 

contribute to their management and conservation.  The use of remotely sensed 

environmental measures in cetacean-habitat studies has increased during the last 25 

years, although in many studies satellite-derived data have been used as supplements 

to in situ data or when equipment failure precluded the collection of along-track data 

(e.g., Davis et al. 1998, 2002; Baumgartner et al. 2001; Hamazaki 2002). 

Smith et al. (1986) suggested that satellite-derived measures of 

oceanographic parameters provide data useful in identifying distinct oceanic 

habitats, interpreting observed distribution patterns of cetaceans, and estimating their 

abundance.  They emphasized that the synoptic nature of remotely sensed data is 

important for cetacean-habitat studies because it provides information on the scale 

and dynamics of physical and biological features characterizing the marine 

environment.  In addition, these data can be used to optimize survey efforts and 

statistically investigate associations between cetaceans and environmental variables.  

Remotely sensed data have been used in cetacean-environment studies to 

characterize conditions throughout specific study areas.  For example, remotely 

sensed measures of both SST and chlorophyll a concentration were used to identify 

productive regions in the Ligurian Sea to enable a qualitative correlation of marine 

mammals to physical and biological parameters (D’Amico et al. 2003).  Remotely 

sensed SST data were used to identify the locations of warm core rings in the North 
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Atlantic in order to determine whether sperm whale sightings were significantly 

associated with these features (Waring et al. 1993; Griffin 1999).  Davis et al. (2002) 

used dynamic height derived from satellite sea surface altimetry data to direct the 

survey ship during data collection efforts as well as retrospectively to evaluate the 

association of cetacean sightings and hydrographic features. 

Remotely sensed data also have been used to investigate potential habitat 

associations in the absence of in situ oceanographic data, often in association with 

aerial survey data or in conjunction with historic whaling records.  Brown and Winn 

(1989) used satellite-derived SST data to investigate distribution patterns of right 

whales based on sightings from aerial surveys in the Atlantic.  Jaquet et al. (1996) 

evaluated the distribution of sperm whales based on 19th century whaling records 

relative to contemporary satellite-derived ocean color measurements averaged over 

an 8-year period (1978-1986).  The pigment data were used to represent variability 

in production of the temperate and tropical Pacific Ocean.  Monthly mean SST 

anomalies estimated from satellite, buoy, and shipboard measurements were used to 

examine trends in harbor porpoise abundance as indicated by sightings during aerial 

surveys conducted off central California (Forney 1999).  Satellite-derived measures 

of SST and chlorophyll a concentration were used in conjunction with blue whale 

call rates in the northwest Pacific to investigate potential habitat associations (Moore 

et al. 2002).  In addition to monthly averaged SST and chlorophyll a values, they 

investigated blue whale associations with frontal regions, which they defined by 

sharp SST gradients. 
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Objectives of this Dissertation 

Quantitative analyses of species-environment associations are one of the 

main ways to study species ecology (Johnson 1980).  The research goals for this 

dissertation are to 1) provide a quantitative examination of seasonal, interannual and 

interdecadal trends in the abundance and distribution of several California cetacean 

species; 2) develop and evaluate techniques for including remotely sensed 

environmental data into species-environment models and identify the most effective 

temporal and spatial resolutions for such modeling and assessment work; 3) compare 

the predictive ability of cetacean-habitat models built with remotely sensed and in 

situ oceanographic data; and 4) assess whether species-environment models 

developed using remotely sensed environmental data are able to predict species 

densities across seasons in the California Current, where the range of interannual 

variability can overlap the range of seasonal variability.  This research will provide a 

foundation for future research aimed at developing robust seasonal models of marine 

mammal distribution using remotely sensed environmental data.   

Active areas of current research in this field include developing cetacean prey 

indices to use as predictor variables in cetacean-habitat models (Vilchis and Ballance 

2005), investigating the appropriate scale for modeling (Redfern et al. in review), 

and evaluating methods for estimating variance (Ferguson and Barlow in prep).  

Future work should focus on developing satellite-derived products that improve the 

predictive performance of cetacean-habitat models, such as water mass proxies.  In 
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addition, future analyses should focus on increasing our ecological understanding of 

cetacean prey distributions, and using this knowledge to develop more effective 

proxy measures from satellite-derived data.  Such variables may lead to advances in 

predictive modeling and provide further insight into the ecological relationships 

between cetaceans and their environment. 

 

Overview of Chapters Two through Four 

The remaining chapters of this dissertation each contribute to the 

examination of seasonal distribution patterns of California cetacean density, with 

emphasis on the development of predictive habitat models that incorporate remotely 

sensed environmental data.  The goal of Chapter Two, “Seasonal and decadal 

patterns of cetacean abundance off central and northern California based on 1980-83 

and 1991-92 aerial surveys,” is to increase our knowledge of cetacean variability at 

seasonal, interannual, and decadal time scales.  Aerial survey data collected in 

central and northern California from 1980 to 1983 during all seasons were 

reanalyzed using more recent, advanced line-transect methods to estimate cetacean 

densities.  Re-analysis of the large 1980-83 dataset eliminated or reduced several 

sources of bias present in the original analysis, resulting in revised, more accurate 

density and abundance estimates of cetaceans for this time period.  The revised 

density estimates and associated measures of uncertainty allowed for a quantitative 

examination of seasonal and interannual patterns of abundance for 1980-83.  In 

addition, the revised estimates allowed for the first statistical comparison of cetacean 



 

 17

abundance between the early 1980s and the 1990s.  While significant inter-decadal 

differences in spring abundance were evident for only one of the five species 

analyzed, the revised 1980-83 abundance estimates reveal variability in both 

seasonal and interannual patterns for the majority of species considered.  Results 

from this study provide additional evidence that interannual variability for many 

California species can be as high as, or greater than, seasonal variability.  The 1980-

83 data sets now can be used for future quantitative analyses, including the 

development of species-environmental models using remotely sensed data.  

Because the collection of in situ data during surveys is expensive and not 

always possible, Chapter Three, “A comparison of California Current cetacean-

habitat models developed using in situ and remotely sensed sea surface temperature 

data,” provides a comparison of models built with remotely sensed data to those built 

with analogous in situ data.  This chapter describes the methodology used to develop 

and evaluate generalized linear and generalized additive models of encounter rate 

and group size for 10 cetacean species, as well as the process for estimating their 

population density.  To examine whether remotely sensed data can be used more 

broadly, and at what scales, this chapter also includes an evaluation of the predictive 

ability of models based on various temporal and spatial resolutions of remotely 

sensed SST.  Models were evaluated by comparing model-based predicted density 

estimates to those estimated directly from the survey data, as well as their ability to 

identify species-environment relationships that are consistent with known 

distribution patterns.  Results indicate that, when sample size is sufficient (ideally 
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greater than 100 sightings), cetacean-habitat models developed using fairly coarse-

scale satellite data have predictive ability that meets or exceeds models developed 

with analogous in situ data.  In addition, satellite-derived estimates of variance in sea 

surface temperature were found to be more effective at characterizing frontal activity 

due to their ability to measure heterogeneity in two dimensions.  The predictive 

ability of cetacean-environment models was found to be affected by the level of 

complexity of the oceanographic environment; more data were required to 

parameterize models for species that inhabit diverse environments.  In the California 

study area, persistent cloud cover is often associated with coastal upwelling areas in 

summer.  Ironically, in these dynamic areas where more data are needed for 

modeling, cloud cover often limits the amount of passive infrared remotely sensed 

SST data that are available.  SST data obtained from rapidly-sampling geostationary 

infrared sensors and from microwave radiometers could help prevent data loss due to 

cloud cover.  Such datasets should be evaluated in future studies.        

Chapter Four, “Predicting seasonal densities of California cetaceans based on 

models built with remotely sensed environmental variables,” expands on the findings 

of Chapter Three, and examines whether models built with data collected in the 

summer can be used in association with winter remotely sensed data to predict 

distribution patterns across seasons.  Models developed using shipboard survey data 

collected in summer during several different years (1991, 1993, 1996, 2001) were 

used to predict cetacean density in winter based on environmental conditions 

measured in winter by remote sensing.  This approach inherently assumes that the 
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range of interannual environmental variability overlaps that of seasonal 

environmental variability in the study region.  Models built with remotely sensed 

data offer a potential means of estimating density for seasons when cetacean surveys 

are difficult to conduct due to weather (e.g., winter in the California Current).  This 

approach, if proven effective, would improve our ability to mitigate anthropogenic 

impacts and understand cetacean ecology during times when survey data are more 

limited.  Predictions of density in winter based on the summer models were 

compared to estimates derived from aerial survey data collected during winter 1991 

and 1992, as well as to those of a null model (i.e., density estimates derived from 

summer shipboard surveys without consideration of environmental data).  Results 

were examined in light of known cetacean distribution patterns documented from 

previous California cetacean-habitat studies.  Results indicate that, for some species 

present off California year-round, models based on four summer/fall seasons with 

cetacean and environmental data had some ability to predict seasonal distribution of 

cetaceans in winter/spring.  However, additional data are needed to improve 

predictive performance.  When predicting across seasons, geographic patterns of 

species density were captured for three of the five species considered.  More data 

collected over a range of oceanographic conditions are needed to make the models 

robust and improve predictive performance.   
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Figure 1.1.  Major surface currents of the northeast Pacific Ocean. 
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Figure 1.2.  Study area off the California coast.  The light gray line depicts 
the outer boundary of the study area, which encompasses approximately 
818,000 km2.  SCB = Southern California Bight.  One degree of latitude = 
111 km. 
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Abstract 
 
 

Aerial line-transect data collected monthly off central and northern California 

from March 1980 to February 1983 provide one of the most comprehensive sources 

of cetacean sighting data for this region.  However, variances reported for the 

original density estimates were incomplete, preventing statistical comparisons to 

more recent density estimates and among the seasons surveyed.  In this study, we 

reprocessed and reanalyzed data collected from the high-altitude (300 m above sea 

level) 1980-83 surveys using more recent, advanced analysis techniques, including 

estimates of precision.  The re-analysis eliminated or reduced several sources of bias 

present in the original analysis, resulting in revised 1980-83 estimates of cetacean 

density and abundance in the approximate 125,100 km2 study area.  Seasonal and 

interannual patterns of abundance were examined quantitatively.  All revised density 
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and abundance estimates were lower than the original estimates derived from the 

survey data.  The revised abundance estimates for five of the most common species 

were statistically compared to more recent aircraft-based estimates for spring 

(February-April) 1991-92 using a confidence-interval based bootstrap technique.  No 

significant inter-decadal differences in spring abundance were identified for Risso’s 

dolphin (Grampus griseus), Pacific white-sided dolphin (Lagenorhynchus 

obliquidens), northern right whale dolphin (Lissodelphis borealis), or humpback 

whale (Megaptera novaeangliae).  The abundance of Dall’s porpoise (Phocoenoides 

dalli) inshore of the 2,000-m isobath was found to be significantly lower in 1980-83 

than 1991-92.  Seasonal and interannual variability in abundance were evident for all 

five of these species. 

 

Introduction 

Relative to many other areas of the world’s oceans, waters off California 

have been surveyed extensively for cetaceans.  Systematic line-transect surveys have 

been conducted periodically off the California coast since 1975 for the purpose of 

estimating cetacean population numbers and distribution patterns (Dohl et al.  1978, 

1986; Lee 1994).  The 1994 amendments to the Marine Mammal Protection Act 

(MMPA) require the National Marine Fisheries Service (NMFS) to produce stock 

assessment reports for all cetaceans in U.S. waters.  The first stock assessment report 

that included estimates of numbers of cetaceans occurring off California was 

published in 1995 (Barlow et al. 1995), and the NMFS Southwest Fisheries Science 
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Center (SWFSC) periodically conducts aerial and shipboard cetacean surveys off 

California to obtain updated estimates of abundance.  A few studies have examined 

historical and seasonal changes in the abundance of cetaceans off California (Barlow 

1993; Forney and Barlow 1998), but the available data for such analyses are limited, 

particularly compared to other marine species such as zooplankton and fish, for 

which data have been collected routinely off California for more than 50 years (Hare 

and Mantua 2000; McGowan et al. 2003). 

By far the most extensive line-transect survey effort off California was 

conducted from 1980 to 1983 off central and northern California for the Bureau of 

Land Management’s Outer Continental Shelf office (now the Minerals Management 

Service [MMS]).  Monthly surveys were conducted from fixed-wing aircraft at both 

high and low altitude (1,000 ft and 200 ft above sea level [ASL], respectively), 

covering a study area from Point Conception to the Oregon border and offshore out 

to 90 nautical miles (nmi).  Preliminary cetacean density and abundance estimates 

derived from these survey data were reported by Dohl et al. (1983); however, the 

methodology used for analysis was not comparable to more recent, advanced 

analysis techniques, and platform-specific biases were not taken into account.  

Aircraft used for recent SWFSC surveys were equipped with viewing ports placed in 

the plane’s belly to provide one observer with an unobstructed view of the trackline.  

In addition, bubble windows were placed on the left and right sides of the aircraft to 

allow observers to look directly beneath as well as to the sides of the plane.  In 

contrast, the MMS aerial surveys were conducted in a plane with flat side windows 
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and no belly windows.  The search pattern, and therefore the proportion of cetaceans 

detected, is different for these two aircraft configurations.  Furthermore, Dohl et al. 

(1983) did not provide estimates of variance for the majority of the abundance 

estimates and the confidence intervals that were provided did not include variance 

associated with group size estimation. Therefore, direct comparisons between Dohl 

et al.’s (1983) abundance estimates and those derived from recent survey data would 

not provide an accurate account of population changes over time.    

 Factors such as Beaufort sea state and group size affect the detectability of 

cetaceans and need to be accounted for when estimating abundance (Barlow et al. 

2001).  Stratification or covariates have been used to improve precision and reduce 

the bias of abundance calculations in such cases (Barlow 1995, 2006; Forney et al. 

1995; Forney and Barlow 1998; Carretta et al. 2001).  The addition of belly windows 

in survey aircraft has also allowed for a conditionally independent survey design 

(Barlow 1995; Forney et al. 1995) that enables estimating the proportion of 

cetaceans at the surface near the trackline that are missed, i.e., perception bias 

(Marsh and Sinclair 1989).  Prior to 1991, conditionally independent observers were 

not used on aerial surveys off California (Lee 1994).  For some species, correction 

factors also have been developed to account for availability bias associated with 

animals near the trackline and missed because they are diving at the time the survey 

platform passes by.  The latter correction factor can be derived through multi-

platform experiments (Laake et al. 1997) or calculated based on a species’ surfacing 
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and diving behavior relative to the speed of the survey platform and search pattern of 

observers (Barlow 1995).   

Dohl et al. (1983) estimated lateral detection functions as part of their 

original analysis, but estimates apparently were not stratified by group size or sea 

state (M. Bonnell, pers. comm. 1997), and no correction factors were applied to 

account for animals missed on the trackline due to either perception or availability 

bias.  In the absence of other biases, this would have led to the underestimation of 

abundance for most species, particularly those that are more difficult to detect (e.g., 

Dall’s porpoise, Phocoenoides dalli) and those known to dive for long periods (e.g., 

sperm whale, Physeter macrocephalus).  However, other sources of bias do exist, as 

demonstrated below, and the overall accuracy of the Dohl et al. (1983) estimates is 

difficult to evaluate.   

Some of the methodological limitations in the 1980-83 results as originally 

reported could be resolved in whole or in part by re-analysis via updated procedures.  

Such a re-analysis was considered well justified given the unmatched 

comprehensiveness of the 1980-83 survey and its potential value as a basis for 

comparison with more recent studies.  In this paper, we have reanalyzed the MMS 

high-altitude survey data for central and northern California to provide more 

accurate 1980-83 abundance estimates and to enable a quantitative comparison to 

abundance estimates from more recent surveys.  We selected the high-altitude survey 

data because that survey was designed specifically to survey cetaceans and the data 

collection methods were most similar to recent methodology.  Although cetacean 
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sightings were recorded during the MMS low-altitude surveys, they were focused 

primarily on seabirds, pinnipeds, and sea otters.  In addition, during the low-altitude 

surveys observers searched on only one side of the aircraft.  For comparison we 

selected the SWFSC 1991-92 California coast aerial surveys (Forney et al. 1995), 

which covered a region overlapping the earlier MMS surveys and were similarly 

designed to survey all species of cetaceans.   To the degree possible, we have 

reduced methodological biases and incorporated estimates of variance in the 

cetacean density and abundance estimates.  Abundance estimates were stratified by 

season and year to examine seasonal and interannual variability in the study area.  

Estimated average abundance for the 1980-83 period also was compared statistically 

to estimates derived from the 1991-92 survey data to examine differences between 

the two periods. 

 

Methods 

MMS high-altitude aerial surveys  

A description of the field and analytical procedures used for the MMS 1980-

83 aerial surveys is provided in Dohl et al. (1983).  Pertinent aspects of the methods, 

including information gathered during the reprocessing tasks, are summarized here.   

Aerial line transect surveys were conducted monthly from March 1980 to 

February 1983.  Each month, a subset of approximately 40 of the 92 pre-determined 

transects between Point Conception and the California-Oregon border (Figure 2.1) 

was surveyed.  The monthly transects were selected a priori in an attempt to provide 
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uniform coverage of the study area on a seasonal basis.   The study area transects 

were oriented east-west and spaced 5 nmi (9 km) apart; distances between the 

transects selected for each month was variable but usually larger.  They were 

designed to survey systematically between the coast and approximately 90 nmi (167 

km) offshore; however, the average distance offshore that was actually surveyed 

during the 3-year period was only about 75 nmi (139 km), presumably because of 

weather or logistic constraints.  Each monthly survey spanned approximately 5 days, 

typically beginning in the south and proceeding north, and covered about 2,000 nmi.  

The nominal flight altitude was recorded as 1,000 ft (305 m) ASL (Dohl et al. 1983), 

although the database includes sightings recorded at altitudes of less than 500 ft (152 

m) ASL and as high as 1,900 ft (579 m) ASL.  

The survey platform was a high-wing, twin-engine Hunting Pembroke 

aircraft outfitted with a VLF-Omega onboard navigational computer.  A radar 

altimeter was used to estimate aircraft height above the water.  The survey team 

consisted of two observers (one on each side of the plane) and one data recorder who 

entered information onto sighting sheets in real-time.  In addition to position, species 

sighted, and number of animals, the sighting sheets included entries for declination 

angle (in degrees) when abeam to the animals sighted, as well as flight altitude.  The 

aircraft was diverted from the transect line in order to fly over animals for improved 

group size estimation and photography. Following species identification and 

enumeration, reciprocal courses were flown back to the transect line to resume the 

survey.  Additional sightings recorded while the aircraft was diverted in this manner 
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were included in the original MMS sighting database and abundance analyses, 

creating a potential bias in sighting rates. 

During the original data processing and analysis, Dohl et al. (1983) made a 

number of assumptions and analytical choices that limit data comparability to more 

recent studies, and they did not explicitly state some analytical details, which also 

prevents direct comparison with results of other studies.  The available information 

suggests that the study area was divided into 5’ x 5’ grid cells bisected by the 

transect lines.  Each grid cell was characterized by water depth, slope, and other 

“fixed” environmental characteristics that were entered into a digital file.  Following 

each monthly survey, dynamic environmental data including Beaufort sea state 

conditions during the survey were entered into a separate file at the 5’ x 5’ grid cell 

resolution.  Sighting data were recorded by latitude and longitude to the nearest 0.1’, 

although the absolute accuracy of positions from VLF/Omega systems in aircraft 

often was uncertain by 0.5’ to 1’ (W.J. Richardson pers. comm. 2007).  Positions 

were assigned to one of the 5’ x 5’ cells and eventually merged with the fixed and 

dynamic environmental files.  Abundance analyses followed simple line-transect 

methods (Burnham et al. 1980) without consideration of covariates or stratification.   

 

SWFSC California coast aerial surveys 
 

Detailed descriptions of the SWFSC aerial survey field methods and 

analytical methods have been published previously (Carretta and Forney 1993; 
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Forney et al. 1995; Forney and Barlow 1998); pertinent aspects are summarized 

here.    

SWFSC conducted aerial line-transect surveys off California in March-April 

1991 and February-April 1992.  The transects followed an overlapping grid (Figure 

2.2) designed to survey systematically along the entire California coast out to 100 

nmi off central and northern California and out to 150 nmi off southern California.  

The transect lines were spaced approximately 22-25 nmi apart.   

The survey platform was a twin-engine, turbo-prop Twin Otter aircraft 

outfitted with two bubble windows for lateral viewing and a belly port for downward 

viewing.  The plane was equipped with a radar altimeter to estimate height above the 

water.  The survey team consisted of three observers: two “primary” observers who 

searched through the left and right bubble windows and a “secondary” observer who 

used the belly window to search the trackline and report sightings missed by the 

primary team.  Using a primary and secondary observation team allowed for the 

estimation of the fraction of animals missed on the transect line.  The survey team 

also included a data recorder who entered sighting information and updated 

environmental conditions throughout the survey using a laptop computer connected 

to the aircraft’s LORAN or GPS navigation system.  The two primary observers used 

hand-held clinometers to measure declination in degrees to the animals sighted when 

abeam of the aircraft.  The belly observer estimated angles based on tick marks 

applied to one edge of the window.  Following line-transect methods, perpendicular 

distances were calculated based on the declination angle and the aircraft’s altitude.  
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Surveys were flown at 185 km/hr (100 knots) airspeed and 700 ft ASL altitude.  

When cetaceans were sighted, the aircraft circled over the animals to identify species 

and make group size estimates; any time the aircraft was diverted from the transect 

was considered “off effort” and additional cetacean sightings made during this time 

were not included in the abundance estimates. 

Abundances were estimated using line-transect methods (Buckland et al. 

2001) and as described in Forney et al. (1995) and Forney and Barlow (1998).  For 

density estimation purposes, Forney et al. (1995) and Forney and Barlow (1998) 

used Akaike’s Information Criterion (AIC, Akaike 1973) to select among potential 

stratification variables, including area, group size category, species group, and 

Beaufort sea state. (AIC is an objective statistical measure used to obtain the best fit 

with the fewest parameters, attempting to optimize the trade-off between variance 

and bias in model predictions.  It is calculated as -2*log-likelihood + 2*number of 

parameters. Smaller values of AIC indicate a better model.)  Variances in density 

estimates were estimated by a bootstrap method using samples consisting of 50 km 

segments of actual survey data that were randomly drawn with replacement to 

simulate 1,000 equivalent surveys.  Abundances for all species were then 

recalculated from the bootstrap survey data and variances and coefficients of 

variation (CV) were obtained from the 1,000 new abundance values.  The original 

abundance estimates derived from these data included corrections for perception bias 

and, for two species (Dall’s porpoise and sperm whale), approximate corrections for 

availability bias (Forney and Barlow 1998).  Correction factors for perception and 
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availability bias were not included in the 1991-92 abundance estimates used for this 

study in order to facilitate a more consistent comparison to the 1980-83 data, for 

which such factors were not available. 

 

Reprocessing the MMS high-altitude aerial survey data 

In 2001, the MMS released the Marine Mammal and Seabird Computer 

Database Analysis System (CDAS; Bonnell and Ford 2001), a compact disc 

containing ship and aerial survey records off California, Oregon, and Washington 

from 1975 to 1997, including sighting and effort data from the 1980-83 high-altitude 

MMS surveys.  The database contains separate files for sightings and survey effort 

with a field common to both files that identifies the effort date.  In the case of the 

1980-83 MMS surveys, the finest resolution available for effort dates is the midpoint 

of the two- to six-day period during which the survey occurred, creating a mismatch 

to sightings, which are identified by the actual date of the observation.  For example, 

if the survey was flown on 10-14 March, the effort date for the entire survey is 

identified as 12 March.  This is most likely an artifact of the way in which the 

original data were recorded: the effort database was created post hoc by interpolation 

from flight waypoints, sighting positions, and any other environmental observations 

recorded by latitude/longitude (Briggs, K.T. pers. comm. 2003).  Thus, information 

such as sea state and flight altitude was available only for the sightings themselves, 

not for each unit of effort.   
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Line-transect methodology is considered “pooling robust” (i.e., data can be 

pooled over many factors that affect detection probability and still yield a reliable 

density estimate; Buckland et al. 2001).  When heterogeneity in the data creates a 

notable difference in detection properties, however, bias can be reduced and 

precision increased by conducting a stratified analysis, i.e., estimating density 

separately for different environmental conditions, group sizes, altitudes, or 

geographic regions, and subsequently combining estimates to calculate total 

abundance (Buckland et al. 2001).  The lack of information on sea state, altitude, and 

other factors associated with survey effort created the biggest challenge in 

reprocessing the MMS dataset using stratified methods that are consistent with those 

used in more recent studies.  Following is a step-by-step description of the 

procedures used to reprocess the MMS survey data, including brief descriptions of 

the potential sources of bias and the methods we used to account for them.  Major 

steps in the data analysis process and a comparison of 1980-83 and current 

methodologies are depicted in Figures 2.3a and 2.3b.   

Oversampling.  The CDAS effort file for the 1980-83 MMS survey is 

configured according to the original grid cells designated by Dohl et al. (1983), so 

that for every 5’ x 5’ grid cell, there is an associated mid-latitude and mid-longitude 

point.  We merged the sighting file with the effort file by appending each sighting 

record to the effort segment whose mid-latitude and mid-longitude point was closest 

to the observation, thus creating a single database in flat file format.  In addition to 

positional information, the effort file includes an approximate effort date as 
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described above and a field for the total distance (in km) flown in a single survey 

period within each grid cell. The latter varies from < 1 km to > 20 km, with the 

average distance reflecting the theoretical straight-line expectation for a given 5’ 

segment of latitude.  While some of the longer east-west segments are clearly due to 

additional flying required in “corner” segments, i.e., when moving off an east-west 

trending transect to head north or south to the next trackline (refer to Figure 2.1), 

there are many mid-transect segments that are much longer than the theoretical 

straight-line distance.  These longer mid-transect segments may reflect situations 

where the survey team flew off the transect line to circle a group of animals in an 

attempt to improve group size estimates or to take pictures.  Under standard line-

transect methods (Buckland et al. 2001), this time should be considered “off effort” 

so that the distance flown, as well as any additional sightings that occur while off 

effort, are not included in the density calculations.  We therefore adjusted all transect 

segments to equal no more than the theoretical straight-line 5’ distance for the given 

latitude.  Segments shorter than the theoretical straight-line expectation were not 

changed.  Sightings on all of the longer segments were inspected and deleted if their 

recorded locations were well north or south of the primary east-west trending 

tracklines, indicating that they were most likely recorded while the aircraft was off 

effort.  This resulted in deletion of approximately 4.46% of the sightings made from 

the primary transect lines.  If some of these were actually on-effort sightings, our 

estimates may be biased downward.  An additional seven sightings were deleted 
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because their recorded sighting locations were outside of the study area; six were in 

Oregon and a single sighting was recorded from the Southern California Bight. 

Overlapping effort. For every month, sightings were plotted on maps of 

actual survey effort using ArcGIS (version 9.0, ESRI, Inc.), and the sighting attribute 

table was queried to provide information on date, sea state, and altitude of the survey 

effort.  For example, for months with sufficient sightings, plots of sightings by date 

helped in the determination of effort date; if adjacent transects contained sightings 

separated by a day, it was clear where one survey day ended and the next began.  

Such determinations were only possible for those months containing many sightings.  

During 12 of the 36 survey months, sightings from different survey days were 

located along the same transect line, indicating that the transect line was flown more 

than once during the month, although the distance flown as shown in the effort file 

reflected only one pass. To prevent an upward bias in encounter rates, when 

sightings from two different survey days were located on the same transect line, one 

of the days was eliminated using the following criteria, in order of application: 1) 

altitude (days with sightings that deviated most from the target altitude of 1,000 ft); 

2) sea state (days with sightings recorded at higher sea state values); and 3) random 

selection.  This resulted in deletion of approximately 1.8% of the sightings made 

from the primary east-west trending tracklines.  There could have been additional 

transect lines that were flown more than once per month with sightings recorded on 

only one (or neither) of the days, but it was impossible to make this determination 

from the available data.   
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Low altitude sightings.  The sighting data indicate that survey flight altitudes 

ranged from 100 to 1,900 ft ASL.  The majority of the sightings (86.06 percent) were 

recorded at the planned survey altitude of 1,000 ft ASL; only 2 percent of the 

sightings had recorded altitudes above 1,000 ft ASL and 4.6% had recorded altitudes 

below 500 ft ASL.  Detection properties for surveys conducted at varying altitudes 

are expected to differ, because the visible swath beneath the aircraft narrows as flight 

altitude decreases.  Ideally, these differences would be taken into account during the 

estimation of detection functions, either through stratification or using altitude as a 

covariate, but sample sizes were insufficient to do so.   

Although altitude data for effort were not available, we conducted 

Kolmogorov-Smirnov (K-S) goodness-of-fit (GOF) tests of detection functions to 

assess differences between survey altitudes.  Sightings with recorded altitudes that 

differed from the 1,000 foot standard were grouped into 5 altitude range categories 

to enable a comparative analysis (100-250, 300-475, 500-750, 800-994, and 1,040-

1,900 ft ASL).    Similar species were grouped to increase sample sizes in each 

altitude range, and the distributions of perpendicular sighting distances were 

compared to those obtained at the standard survey altitude of 1,000 ft.  The species 

groups included medium-large whales, comprising sperm whale, gray whale 

(Eschrichtius robustus), humpback whale (Megaptera novaeangliae), fin whale 

(Balaenoptera physalus), and blue whale (Balaenoptera musculus); delphinids which 

included northern right whale dolphin (Lissodelphis borealis), Pacific white-sided 

dolphin (Lagenorhynchus obliquidens), and Risso’s dolphin (Grampus griseus); and 
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porpoises, which included harbor porpoise (Phocoena phocoena) and Dall’s 

porpoise.  The K-S test results suggested that the distributions were not significantly 

different (α = 0.05) for any of the species groups; however, statistical power to detect 

differences was low for altitudes below 500 ft ASL because sample sizes were small 

(< 10).  For this reason, effort and associated sightings were deleted when sightings 

indicated that entire transects were flown at altitudes below 500 ft.  This resulted in 

the deletion of approximately 1% of the sightings and < 1% of effort made from the 

primary east-west trending transect lines.   

Cross legs. Sighting rates have been shown to vary with glare conditions 

(Forney et al. 1991), which are often a function of the aircraft heading.  The MMS 

surveys were designed as a series of 92 parallel transect lines located perpendicular 

to the coast, requiring the aircraft to transit north or south between the primary 

transect lines.  Both the effort and sightings associated with these cross legs were 

included in the original density estimates published by Dohl et al. (1983).  We 

deleted these cross legs from our analysis, because 1) glare and detection properties 

are expected to be different on north-south vs. east-west transect lines, and 2) 

traveling parallel to the coast, particularly in the case of the nearshore cross legs, 

leads to oversampling portions of the study area.  Furthermore, only one side of the 

aircraft was searched as they transited nearshore to the next transect line.  Deleting 

the nearshore cross legs removed 349 sightings (16%) from the database; 70% of 

these were gray whale sightings.  The deletion of offshore cross legs removed 95 

sightings (< 5%) from the database.   
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Missing sea state information.  The detectability of cetaceans, particularly 

small, cryptic species, is affected by sea state conditions at the time of the survey 

(Barlow 1995).  If sample size permits, estimation is often more precise and accurate 

when detection functions are estimated separately for sightings in calm waters 

without whitecaps (i.e., Beaufort 0-2 conditions) and in the presence of whitecaps 

(i.e., Beaufort 3-4;), or if density calculations are restricted only to calm conditions 

(Forney et al. 1991; Barlow 1995; Forney 1995; Carretta et al. 2001).  This is 

particularly true for small or cryptic cetaceans.  Objective statistical criteria, such as 

AIC, are generally used to determine the need for such stratification.  This approach 

requires that effort data be designated by sea state. 

For the MMS dataset, various methods were explored to deal with the 

missing sea state information including data exclusion, estimating sea state from 

archived sources of wind information such as historic buoy data or surface pressure 

maps, linear interpolation between sightings with known sea state values, weighted 

interpolation using time as a weighting factor, and more sophisticated interpolation 

procedures such as kriging.  All of these approaches to estimating sea state were 

subject to much uncertainty.  The method selected for this analysis involved a multi-

step process that assigned sea state categories to effort based on available 

information from the sighting records.  First, all sightings and transects flown per 

month were plotted using ArcGIS, and the sightings coded by sea state.  All 

sightings recorded as Beaufort 5-6 and their associated transect lines were deleted.  

This resulted in the elimination of 8 primary transects (i.e., east-west trending) 
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totaling 713 km of effort and a total of 4 cetacean sightings (< 1% of the total 

sightings).  All remaining transect lines were assumed to have been flown in 

Beaufort 0-4 conditions as suggested by the original investigators (M. Bonnell, pers. 

comm. 1997).  Where sightings were sufficiently frequent, the underlying effort 

segments were designated as either Beaufort 0-2 or Beaufort 3-4 based on recorded 

sea states.  Where sightings were sparse or sea state values were highly variable, 

effort was designated as 0-4.   

Based on the reprocessed survey data, a total of 109,440 km were flown in 

sea state category of Beaufort 0 through 4.  Sixteen of the 1,533 sightings had no 

corresponding sea state information.  Of the remaining 1,517 sightings, more than 

85% were recorded in Beaufort sea states of 0-2.  Given the small number of 

sightings in Beaufort sea state conditions > 2, reliable statistical tests for detection 

function differences in sea state category 3-4 could not be made for any of the 

species/species groups.  For this reason, all sea states were pooled for analysis.   

 

Density and abundance estimation 

For the purpose of reducing bias in the density and abundance estimates 

caused by uneven geographic coverage, the study area was separated into four 

regions based on oceanographic boundaries and survey coverage.  An attempt was 

made to equalize effort within each stratum to the degree possible in order to prevent 

potential bias resulting from over- or under-sampling subregions within each 

stratum.  Off the California coast, major upwelling centers include Cape Mendocino, 
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Point Arena, Point Reyes, Point Sur, and Point Conception (Hickey 1979; Longhurst 

2007).  Three north-south strata were defined inshore of the 2,000-m isobath, with 

divisions at Cape Mendocino and Point Sur, and a fourth stratum covered the entire 

study area offshore of the 2,000-m isobath (Figure 2.4).  Cape Mendocino was 

chosen as a dividing line between the “northern” and “north central” strata because 

the Mendocino Escarpment is recognized as a natural biogeographical boundary, 

with distinct oceanographic processes occurring north of the cape (Longhurst 2007).   

Point Sur was selected as the boundary between the north central and “south central” 

strata because Dohl et al. (1983) noted that south of Point Sur, winds were favorable 

for upwelling throughout most of the 3-year study period.  For simplicity, the 

combined northern, north central, and south central strata will be referred to as the 

“inshore” stratum, because they cover the regions inshore of the 2,000-m isobath.  

The area of each region was calculated using ArcGIS; the total study area was 

defined to include the region between shore and the furthest offshore extent of the 

transect lines surveyed during the 3-year period (125,138 km2; Figure 2.4).  Overall 

survey effort varied among strata, particularly between the offshore and inshore 

strata (Table 2.1). 

The abundance of some species of cetaceans varies seasonally within the 

study area (Forney and Barlow 1998).  To examine seasonal variability during 1980-

83, density and abundance estimates were stratified into four 3-month seasonal 

periods.  Oceanographic seasons vary annually in both timing and duration, with 

warming or cooling trends localized along different areas of the California coast and 
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of variable strength based on the extent of upwelling (Lynn and Simpson 1987; 

McGowan et al. 1998; Roemmich 1992; Collins et al. 2002).  Long-term (1967-

1991) monthly upwelling indices from three locations along the California coast 

show consistent highs in June and July and consistent lows in December and January 

(Pacific Fisheries Environmental Laboratory [PFEL] Coastal Upwelling Indices 

website1). Further, the nearshore surface countercurrent generally develops and 

flows poleward along the California coast from November to January (Pares-Sierra 

and O’Brien 1989).  Therefore, we adopted the following seasonal definition for this 

analysis: spring = February–April, summer = May–July, fall = August–October and 

winter = November–January.  These seasons differ from those defined by Dohl et al. 

(1983) in the original analysis, but are consistent with more recent spring (Forney et 

al. 1995) and fall (Barlow 1995) surveys.  

Dohl et al. (1983) do not describe how sighting declination angles were 

determined during the aerial surveys.  The majority of the sighting declination angles 

recorded in the original database were rounded to the nearest five degrees (e.g., 5, 

10, 15, etc.).  In order to reduce the potential for clumped perpendicular distance 

distributions resulting from rounding errors, we smeared the declination angles by 

adding or subtracting random integer values from 0 to 2 prior to converting the 

angles to perpendicular distances.   

Distributions of perpendicular sighting distances are often pooled across 

species when doing line-transect calculations in order to increase sample size and 

                                                 
1 http://www.pfeg.noaa.gov/products/PFEL/modeled/indices/upwelling 
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reduce variance (Buckland et al. 2001).  Following the methods of Barlow (1995) 

and Forney et al. (1995), we created preliminary species groupings and group size 

categories by combining perpendicular distance sighting distributions for species that 

were similar or occurred in mixed groups.  The best stratification scheme was 

determined using an iterative approach of testing for significant differences between 

various species groupings and group size categories using a Kolmogorov-Smirnov 

test.  Unidentified species were not included in the estimates, resulting in 

underestimation of true densities.  The iterative testing approach resulted in 7 species 

group categories (Table 2.2).   

Density and abundance for each season and species were estimated for all 

years pooled according to the standard line-transect formula (Buckland et al. 2001):  
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where 

Nh,k    = estimated total number of animals of species k in the study 

area during season h; 

nh,i,j,k   =  number of sightings of groups of species k in group category 

j, during season h in geographic stratum i; 

sh,i,j,k     = mean group size for groups of species k in group category j, 

during season h in geographic stratum i, calculated as the total 
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number of animals in all groups divided by the number of 

groups sighted;  

fj(0)   =  the probability density function evaluated at zero 

perpendicular distance, i.e., on the trackline, for group 

category j of the species group to which species k belongs (in 

km-1); 

Ai      =  size of geographic stratum i (in km2); 

Lh,i    =  length of transect line (in km) surveyed in geographic stratum 

i during season h. 

 
An alternate formula that did not include geographic stratification was used 

to estimate seasonal abundances for the inshore stratum by year, y, because sample 

sizes were insufficient to stratify simultaneously by year, season, and geographic 

stratum: 
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where 

Ny,h,k    = estimated total number of animals of species k in the study 

area during season h in year y; 

ny,h,j,k    = number of sightings of groups of species k, in group category 

j, during season h in year y; 
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sy,h,j,k   = mean group size for groups of species k, in group category j, 

during season h in year y; 

fj(0)    = the probability density function evaluated at zero 

perpendicular distance, i.e., on the trackline, for group 

category j of the species group to which species k belongs (in 

km-1); 

A        = size of inshore stratum (in km2); 

Lh,y     = length of transect line (in km) surveyed in year y during 

season h. 

These yearly estimates were made only for the inshore stratum because the 

offshore stratum was not sampled proportionately; it represented 54% of the study 

area but included only 20% of the overall survey effort in the original analysis 

(Table 2.1).  Following deletion of the areas furthest offshore that were never 

surveyed (Figure 2.4), the offshore stratum represented 49% of the study area and 

included 20% of the overall survey effort (Table 2.1).  This uneven coverage would 

have resulted in biased estimates.  Effort was more representative within the three 

sub-regions of the inshore stratum: for this study, the south-central stratum had 24% 

of the effort and 15% of the area; the north-central stratum had 37% of the effort and 

23% of the area, and the northern stratum had 19% of the effort and 13% of the area.   

Values for f(0) were estimated for each species group by fitting the 

distribution of perpendicular sighting distances for all years and all regions 

combined to uniform, half-normal, and hazard-rate models using the program 
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DISTANCE (Thomas et al. 2002). Based on visual inspection of perpendicular 

sighting distributions at various scales, a left truncation distance of 162 m (531 ft) 

was selected to eliminate the blind spot beneath the aircraft.  Right truncation 

distances for each species/species group were selected to eliminate the most distant 

5% to 10% of the sightings (Buckland et al. 2001).  The most parsimonious model 

was selected based on maximizing the chi-square goodness-of-fit statistic and 

minimizing AIC (Buckland et al. 2001).     

Perpendicular distances were not recorded for 121 (7.9 percent) of the “on-

effort” sightings in the final database.  In order to account for these sightings in the 

density estimates, we randomly prorated them based on the perpendicular distance 

distributions for each species/species group.  We therefore used mean group size for 

estimating density and abundance rather than a regression-based estimate (see 

below) because the latter is dependent on having perpendicular distance data for all 

sightings.   

The probability of detection is often a function of group size, i.e., larger 

groups are easier to detect and are thus over-represented in the sample.  Methods of 

reducing this potential size bias include stratifying by group size, or using 

regression-based estimates of mean group size.  Buckland et al. (2001) recommend 

regressing the log of the observed group size against the estimated probability of 

detection at distance x.  If the regression is significant at α = 0.15, the regression-

based estimate of mean group size at zero distance or the left-truncation distance 

(where, theoretically detection probability is maximal) is used in place of the mean 
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group size.   In this study, potential group size bias was reduced by estimating 

densities separately for small groups and sightings of single species (vs. multiple 

species sightings).  In addition, we ran regressions on each of the 7 species/species 

group categories using only the sightings for which perpendicular sighting distances 

were known.  We found that evidence of group size bias remained for two 

categories: single species sightings of northern right whale dolphin, and multiple 

species sightings of Risso’s, Pacific white-sided, and northern right whale dolphins.  

For these two species/species groups, we therefore used the average group size for 

the subset of sightings within a narrower strip width, for which there was no 

indication of size bias.  In both cases this occurred where the probability of detection 

= 0.6, consistent with recommendations of Buckland et al. (2001).     

In line-transect theory, g(0) is the probability of detecting an animal or group 

of animals on the transect line.  This probability is known to be less than 1 for aerial 

surveys of most cetaceans.  Insufficient data are available to estimate the true 

probability of detection, and therefore the estimates reported here are minimum 

estimates because we assumed that g(0) = 1.0.  The extent of underestimation will 

vary by species, depending on conspicuousness and on diving and schooling 

behavior.  



 

 55

Variance estimation 

Precision of the density estimates was estimated analytically using the 

formula for stratified estimates (Buckland et al. 2001):  
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Seasonal bootstrap comparison  

Differences in seasonal abundance within the 1980-83 study period were 

examined using the confidence-interval-based procedure presented by Forney and 

Barlow (1998), and modeled after Lo’s (1994) difference of means approach.  

Pairwise comparisons were made iteratively between the two seasons with the 

greatest difference in estimated abundance (excluding zeros).  Only if the initial 

comparison was significant were further pair-wise comparisons made.  For each 
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season, 1,000 abundance estimates, N*, were generated by applying random 

lognormal deviates to the original point estimate of abundance and standard error 

(SE), in a manner similar to a parametric bootstrap (Efron and Tibshirani 1998).  We 

used lognormal deviates since products (i.e., abundance estimates) theoretically have 

lognormal error distributions.  In this case, we were not attempting to estimate the 

true population means, but rather testing the probability that the two samples came 

from the same distribution.  Given the pair of 1,000 seasonal abundance estimates, 

N*season 1 and N*season 2, respectively, 1,000 difference values were calculated as N* 

season 1 – N* season 2.  A 95% confidence interval for each species was then calculated 

from this set of 1,000 difference values using the bias-corrected and accelerated 

(BCa) method recommended by Efron and Tibshirani (1998).  (The BCa method 

provides a more accurate comparison than uncorrected percentile methods, because 

the latter assume the SE is constant rather than a function of sample size; BCa 

corrects for this “acceleration” by accounting for how fast the SE changes with 

sample size.)  Seasonal abundance estimates were determined to be significantly 

different at α = 0.05 if the 95% confidence interval of their difference did not contain 

zero.  This method has been shown to be robust to a variety of underlying error 

distributions, including the lognormal (Lo 1994).  When significant seasonal 

differences were identified, testing continued using the two seasons with the second-

largest difference in the point estimates.  Testing continued in this way until the 

seasonal abundance difference was not identified as significant at α = 0.05 or until 

all seasons had been tested.  
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Bootstrap comparison to 1991-92 estimates 

For this comparison, cetacean abundances were re-estimated from the 

SWFSC 1991-92 aerial survey data for the smaller MMS study area using previously 

described methods (Forney et al. 1995; Forney and Barlow 1998).  Corrections for 

perception and availability bias, i.e., g(0), were not applied to these 1991-92 

abundance estimates in order to maintain consistency with the 1980-83 estimates, for 

which estimates of g(0) were not available.  To statistically compare the new 1980-

83 abundance estimates with those generated from the 1991-92 data for the same 

geographic region, we used the same confidence-interval-based procedure as 

described above for the seasonal comparison.  In this case we computed differences 

in 1,000 bootstrap abundance estimates for the 1980-83 and 1991-92 periods.  For 

the 1980-83 data, 1,000 abundance estimates were generated by applying random 

lognormal deviates to the original point estimate of abundance and SE as described 

above.  For the 1991-92 data, 1,000 bootstrap abundance estimates, N*, were 

produced following the methodology described in Forney and Barlow (1998) but 

using the smaller MMS study area.   

 

Results 

1980-83 seasonal abundance estimation 

A total of 2,124 cetacean sightings of 16 species and two genera (which 

could not be identified to species) were made during the 36 monthly MMS high-

altitude surveys.  Following reprocessing, a total of 1,533 sightings (72.2% of the 
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original total) remained in the final database used for density and abundance 

estimation (Table 2.3).  Density estimates were not made for whales belonging to the 

genus Kogia, short-finned pilot whale (Globicephala macrorhynchus), sei whale 

(Balaenoptera borealis), minke whale (Balaenoptera acutorostrata), Cuvier’s 

beaked whale (Ziphius cavirostris), Baird’s beaked whale (Berardius bairdii), and 

beaked whales belonging to the genus Mesoplodon, due to the limited numbers of 

sightings available for estimation of their detection functions.  In addition, density 

estimates were not made for the gray whale or harbor porpoise because the broad 

MMS survey design was not appropriate for either of these species.  They occur 

within a narrow coastal band and are generally assessed using focused (single-

species) nearshore surveys (Forney et al. 1991; Buckland et al. 1993; Carretta et al. 

2001).  Of the remaining nine species, five species were represented by 118-250 

sightings each, and four species were represented by 16-31 sightings each.  The latter 

four species (and one of those with > 100 sightings) were medium-large whales, and 

were treated together for purposes of estimating the detection function.  The number 

of sightings and average group size were seasonally variable for the majority of 

species for which we derived density and abundance estimates (Table 2.4). 

The perpendicular distance data for all species/species groups were best 

modeled with a hazard-rate model and a left truncation distance of 162 m (531 ft) 

(Figure 2.5).  The left truncation distance was identical to that used by Dohl et al. 

(1983).  Separate models were selected based on AIC for single-species of small 

cetaceans, mixed-species groups of northern right whale dolphins, Pacific white-
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sided dolphins, and Risso’s dolphins, and for small groups (1-2 individuals) vs. large 

groups (3+ individuals) of Dall’s porpoise (Table 2.2).  All medium to large whales 

were combined. 

Statistical comparisons cannot be made between the revised abundance 

estimates presented here and the original estimates reported by Dohl et al. (1983); 

however, point estimates provide a representative comparison (Table 2.5).  All of the 

density and abundance estimates resulting from reprocessing and reanalyzing the 

1980-83 high-altitude aerial survey data are lower than the estimates derived by the 

original researchers based on both the high- and low-altitude survey data (see 

Discussion). 

Geographically stratified estimates were derived by pooling data across all 3 

years, providing an indication of average seasonal distribution in the study area 

(Tables 2.6a and 2.6b).  Annually stratified estimates provide a measure of 

interannual variability in seasonal patterns within the inshore portion of the study 

area (i.e., inshore of the 2,000-m isobath) during 1980-83 (Tables 2.7a and 2.7b).  

The geographically stratified abundance estimates appeared seasonally variable for 

all species considered (Table 2.6b).  Within the nearshore stratum, seasonal 

differences between each of the years were evident for most species and were most 

pronounced for Pacific white-sided dolphin (Table 2.7b).  The geographically 

stratified estimates are expected to be more accurate because they account for 

geographic heterogeneity.  However, both sets of estimates are biased low because 

the probability of detecting an animal on the trackline, g(0), was not taken into 
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account, i.e., was treated as if it were 1.0.  In addition, unidentified animals were not 

included in the density estimates.    

Statistically significant differences in seasonal abundance were evident for 

six of the nine species evaluated (Table 2.8).  Bootstrap comparisons did not identify 

a significant difference in seasonal abundance for Risso’s dolphin or northern right 

whale dolphin, despite the appearance of seasonal variability in the point estimates 

(Table 2.8).  The abundances of both Dall’s porpoise and Pacific white-sided dolphin 

in fall (August-October) were determined to be significantly different (p = 0.003 and 

p = 0.004, respectively) from those in spring (February-April).  As expected given 

their seasonal migration patterns (Calambokidis et al. 2001, 2003), the abundances 

of blue and humpback whales were found to be significantly higher during the 

August-October time period compared to the other seasons. 

 

Comparison to 1991-92 SWFSC abundance estimates 

Only five species were sighted in sufficient numbers during both the 1980-83 

and 1991-92 surveys to be included in the statistical comparison (Table 2.9).  No 

significant differences in abundance were identified for Risso’s dolphin, Pacific 

white-sided dolphin, northern right whale dolphin, or humpback whale.  Dall’s 

porpoise was more abundant during the 1991-92 surveys (p = 0.04).     

Neither blue whales nor fin whales were sighted in spring during either 

survey in this portion of the study area.  Killer whales (Orcinus orca) and sperm 

whales were sighted during spring in 1980-83 but were not recorded in this area 
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during the 1991-92 surveys.  The lack of sightings in 1991-92 was to be expected 

given the low numbers seen in spring 1980-83 (Table 2.4) and the lesser survey 

coverage in 1991-92.  Conversely, common dolphins (Delphinus spp.) and 

bottlenose dolphins (Tursiops truncatus) were both sighted in 1991-92 but were not 

sighted in the entire study area during the 1980-83 high-altitude MMS surveys; there 

were two sightings of common dolphins during the low-altitude surveys in this area 

(Dohl et al. 1983).  It is surprising how few common dolphin sightings there were 

during 72 surveys covering the 3-year period, especially given the high numbers of 

sightings of this species during recent surveys (Barlow 1995; Forney et al. 1995; 

Barlow and Gerrodette 1996; Benson et al. 2002; Barlow 2003). 

 

Discussion 

Comparison to Dohl et al. (1983) estimates 

The revised abundance estimates presented here are lower than the original 

estimates reported by Dohl et al. (1983).  The actual f(0) estimates used by Dohl et 

al. were not reported in their 1983 report; however, f(0) estimates provided by M. 

Bonnell (pers. comm. 1997) for MMS high-altitude surveys off California were 

similar to those used here and probably did not contribute to the differences in 

density estimates.  It is apparent that several other factors introduced substantial 

upward biases in the analysis presented by Dohl et al. (1983), including 1) the 

inclusion of sightings and effort on transit legs between transects, 2) the apparent 

inclusion of off-effort sightings and sightings from transects flown more than once in 
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the original analysis, without incorporation of the additional effort, 3) an inflated 

study area size (140,000 km2) that included offshore regions never surveyed, and 4) 

the lack of geographic stratification to account for the over-sampling of nearshore, 

high-density areas compared to offshore, low-density areas.  Biased sampling is 

likely most responsible for Dohl et al.'s (1983) inflated density estimates, because 

density estimates derived primarily for shelf and slope waters, where animals are 

more abundant (Table 2.6a), were extrapolated to offshore regions where there was 

little or no survey effort (Table 2.1) and population densities are lower.    

As noted by Dohl et al. (1983), group size bias also may have contributed to 

inflated density estimates, particularly for species with highly variable group sizes 

ranging from one to several thousand animals (e.g., Pacific white-sided dolphin, 

northern right whale dolphin).  Another factor that may have contributed to the 

difference between the revised and original density estimates involves the way in 

which Dohl et al. combined data from both the high- and low-altitude surveys to 

derive overall mean density values.  After densities were estimated by species and 

season for each 5’ x 5’ cell, larger 15’ x 15’ quadrats were established and density 

estimates from the smaller cells were averaged to yield new density values.  The 

quadrat density estimates from the high- and low-altitude surveys were then 

averaged to provide relative densities and abundance estimates for the entire study 

area.  The same methodology was used to estimate densities from the low-altitude 

surveys.  Thus, all of the factors contributing to overestimation of the high-altitude 

density estimates also apply, resulting in exaggerated estimates derived from the 
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low-altitude surveys.  The mean estimates from the combined surveys are thus 

derived from two sets of overestimated values.   

For this study, reliance on sighting data collected from only the high altitude 

(1,000 foot ASL) MMS surveys likely resulted in an underestimation of abundance 

for small species that are difficult to see from the air such as Dall’s porpoise.  Survey 

effort was similar for the high- and low-altitude surveys, yet there were twice as 

many sightings of Dall’s porpoise during the low altitude surveys, despite the limited 

lateral visibility at 200 feet ASL (Dohl et al. 1983).  In addition, Dohl et al. (1983) 

noted that despite the higher number of sightings and larger mean group size of 

Risso’s dolphins recorded from the high-altitude surveys, densities for this species 

were estimated to be higher when only low-altitude data were used.  They attributed 

this difference to their estimate of f(0), which was 4.6 times larger for the low-

altitude data.  For all species, estimates of f(0) were up to six times larger for the 

low-altitude surveys and resulted in abundance estimates that were consistently 

higher than those estimated from the high-altitude data.   

Dohl et al. (1983) only provided analytical confidence intervals for 

abundance estimates of a few species and their variance calculations did not include 

group size variance, which can significantly affect variance in density.  Therefore, 

the 95% confidence intervals presented by Dohl et al. (1983) are likely too narrow 

and the CVs underestimated.  In this study, CVs were calculated for all species 

according to recommendations in Buckland et al (2001) and included the stratified 

estimates of variance in mean group size.  Both the point estimates and the variances 
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reported here are expected to be more accurate than those presented in Dohl et al. 

(1983). 

 

Patterns of seasonal abundance, 1980-83 

The revised 1980-83 abundance estimates reveal variability in both seasonal 

and interannual patterns for the species considered (Tables 2.6b and 2.7b).  The 

abundance of Dall’s porpoise and Pacific white-sided dolphin was determined to 

vary significantly (p = 0.03 and p = 0.04, respectively) with season.  More animals 

were present in the study area during fall (August-October) than spring (February-

April) (Table 2.6b).  Both of these species had relatively lower variance estimates for 

the seasons compared (CVs ranging from 0.30-0.44; Table 2.6b) than did Risso’s 

dolphin and northern right whale dolphin (CVs ranging from 0.40-1.16; Table 2.6b).  

For the latter two species, no significant difference in seasonal abundance was 

found, despite highly variable point estimates.  Interannual variability was high for 

all of the small odontocetes considered (Table 2.7b), and results from this study 

support evidence presented by Forney and Barlow (1998) that interannual variability 

for these species can be as high as, or greater than, seasonal variability.   

Statistically significant seasonal differences in abundance were evident for all 

of the medium-large whale species considered, except for sperm whale (Table 2.8).  

Seasonal differences in the abundance of blue and humpback whales were expected 

given their known foraging patterns off California during summer and fall; blue 

whales are present from roughly June through November and humpback whales May 
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through November (Calambokidis et al. 2001, 2003).  Abundance estimates for both 

these species were highest during the August to October period, consistent with 

known distribution patterns.  Seasonal abundance comparisons for fin whale were 

also consistent with known distribution patterns which indicate an increase in 

numbers of this species in summer and fall (Forney and Barlow 1998).  The 

abundance of killer whales was also found to be significantly different among 

seasons, with more animals present during August through October than November 

through January.  This result was surprising given the few sightings (3 in each 

season) and large variances (> 0.77) associated with the abundance estimates, and 

this result is inconsistent with past studies that indicate a lack of seasonal pattern for 

killer whales (Forney and Barlow 1998). 

The annual estimates presented here (Table 2.7b) reflect interannual 

variability in seasonal abundance in the inshore portions of the study area during 

1980-83.  Part of the survey period overlapped a very strong El Niño-Southern 

Oscillation (ENSO) event, which is a disruption in the ocean-atmosphere system that 

results in the development of abnormally warm sea surface temperatures (SSTs) 

across the eastern tropical Pacific (Cane 1983; Fiedler 2002).  During the 1982-83 

ENSO event, many marine species exhibited considerable shifts in population 

distributions in the northeastern Pacific (Barber and Chavez 1983; Pearcy and 

Schoener 1987).  These shifts included at least one cetacean species, the bottlenose 

dolphin (Wells et al. 1990).  Because the majority of cetacean species are highly 

mobile, it is expected that an ENSO event would result in changes in local cetacean 
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abundance and distribution in response to the change in oceanographic conditions 

and availability of prey.  Previous studies have documented large shifts in the 

distribution of Dall’s porpoise in the study area, suggesting that these animals prefer 

regions of cooler, upwelling-modified water (Forney and Barlow 1998; Forney 

2000).  However, during the MMS surveys, the highest numbers of Dall’s porpoise 

occurred during the time when water temperatures were elevated due to the ENSO 

event (i.e., August 1982-February 1983).  It is possible that reduced upwelling 

during the 1982-83 El Niño concentrated Dall’s porpoise in some of the surveyed 

regions as documented for humpback whales in Monterey Bay, CA, during the 1997-

98 El Niño (Benson et al. 2002).  Therefore, the apparent increase in Dall’s porpoise 

density during ENSO could be an artifact of survey design.  

 

Comparison to 1991-92 spring abundance estimates  

The methodology used to derive the new density and abundance estimates for 

1980-83 is comparable to that used for more recent aerial surveys, allowing 

evaluation of population changes during spring over the 10-year period (Table 2.9).  

The abundance estimates appear highly variable between 1980-83 and 1991-92; 

however, of the five species tested, a significant difference in abundance was 

identified for only one species, Dall’s porpoise.  This could be due in part to the high 

CVs (i.e., greater than 0.42) estimated for the other four species tested.  Also, the 

power to detect significant differences was low, in part due to inadequate sample 

size; with the exception of Dall’s porpoise, the 1991-92 surveys provided fewer than 
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six sightings per species.  This compares to greater than 28 sightings available for all 

species except humpback whale from the February to April time frame of the 1980-

83 surveys.  The difference in sample size between the two survey periods highlights 

the value of the intensive survey coverage achieved in 1980-83 during each season.     

The 1991-92 spring abundance estimate of Dall’s porpoise in the inshore 

portion of the MMS study area (1,733 animals) was more than three times higher 

than during 1980-83 (574 animals), and this difference was determined to be 

significantly different (p = 0.04).  The precision of the 1980-83 and 1991-92 

estimates was similar (0.34 and 0.36, respectively).  The f(0) values used to estimate 

densities were also similar, as the f(0) value of 4.70 used for the 1991-92 densities 

falls almost directly between the f(0) values of 6.25 (for 1-2 animals) and 3.66 (for 

group sizes > 2) used to estimate densities for 1980-83.  As noted above, use of the 

high altitude (1,000 feet ASL) 1980-83 survey data may have contributed to an 

underestimation of Dall’s porpoise abundance in this study.     

 

Biases and caveats 

The present analysis successfully eliminated or reduced several key sources 

of bias that were present in the original analysis of 1980-83 MMS survey data (Dohl 

et al. 1983), but several sources of bias remain.  The age of the data, coupled with 

technological limitations during the original data collection and processing, caused 

some information to be lost or insufficiently recorded and required a number of 

assumptions to be made.  This was particularly true of the effort data, for which the 
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now-available information did not include sea state, survey altitude, or specific 

survey dates.  Each of these could be approximated from information in the sightings 

file, but some of the details were missing.  The examination of sea states associated 

with sightings by geographic region suggested that the majority of effort was 

conducted during near-calm conditions (Beaufort sea states of 0-2), and that the 

estimation would be robust to pooling of sightings made in varying sea states.  In the 

absence of effort-specific sea state information, there is no way to evaluate this 

assumption, potentially introducing a downward bias of unknown magnitude.    

Many sources of bias related to data collection from an aircraft, e.g., 

availability bias, are assumed to be similar for the 1980-83 and 1991-92 aerial 

surveys, allowing direct comparisons of relative abundance estimates.  However, the 

different aircraft configurations used for the two surveys affected the field of view 

and therefore the detectability of cetaceans with respect to distance from the transect 

line.  The reduced visibility resulting from the flat windows used during the 1980-83 

surveys is partially taken into account in the detection function, f(0), as the left 

truncation distance represents the approximate outer edge of the blind spot directly 

beneath the plane.  Both studies assume a probability equal to 1 of detecting animals 

at zero perpendicular distance (e.g. below the aircraft for the 1991-92 data and at the 

truncation distance of 162 m for the 1980-83 data).  It is likely, however, that the 

degree to which this assumption was violated varied between the two time periods.  

A separate experiment examining the probability of detection using these two 

different aircraft configurations would be required to assess potential differences.   
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We did not incorporate any correction factors for g(0), the probability of 

detecting an animal or group of animals on the transect line, despite the fact that 

correction factors for perception bias were available for all species sighted in 1991-

92.  This probability is known to be less than 1 for aerial surveys of most cetaceans 

and therefore the estimates reported here are biased downward to a degree dependent 

on the species’ diving and schooling behavior. 

 

Conclusions 

The density and abundance estimates reported in this study were derived 

using more advanced line transect analysis techniques than the original analysis of 

Dohl et al. (1983) and, therefore, provide a more accurate indication of cetacean 

abundance and distribution patterns off central and northern California during 1980-

83.  The re-analysis eliminated several sources of upwards bias present in the 

original analysis, resulting in revised density and abundance estimates that are much 

lower than the original estimates derived from the survey data.   Although more 

accurate, the estimates reported here are biased downward from the true density 

because not all sources of bias could be accounted for.  Estimates of precision were 

calculated analytically.  Thus, they permit quantitative comparisons within the 

dataset and with abundance estimates derived from other aerial survey datasets 

analyzed using similar methodology.  

Year-to-year (1980-83 vs. 1991-92) comparisons of spring (February-April) 

abundance inshore of the 2,000-m isobath showed a significant difference for only 
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one species, Dall’s porpoise, despite the very different point abundance estimates for 

all five species considered.   As for the seasonal comparisons, the abundance 

estimates for the remaining four species had high variances (CVs > 0.40) as 

compared to those of Dall’s porpoise (CVs < 0.40).  Based on the limited 

information from this study, it is impossible to determine if the significant difference 

in abundance between the early 1980s and early 1990s evident for Dall’s porpoise is 

indicative of a long-term trend, interannual variability, or a result of differences in 

survey conditions.  The limited numbers of sightings available from the 1991-92 

surveys contribute to low statistical power; had the 1980-83 monthly survey effort 

been repeated a decade later, our power to detect any trend would have been far 

greater.  Temporal and spatial variability in species distribution and abundance often 

result in a low statistical power to detect trends (Gerrodette 1987; Forney et al. 1991; 

Edwards and Perkins 1992; Forney 1999).  Cetaceans often respond to 

oceanographic variability by moving over large geographical distances to locate 

suitable habitats, and regions such as California that exhibit high environmental 

variability present an even greater challenge in tracking population trends (Forney 

2000).  Both the 1980-83 and the 1991-92 survey periods were characterized by cool 

water conditions (1980 and 1991) that shifted to anomalously warm water conditions 

(1982-83 and 1992), particularly in the case of the 1982-83 ENSO event.  It is not 

known how similar or different conditions were in localized areas of the study region 

and how these conditions might have affected the distribution of cetacean species 

during these periods.  Further studies of the oceanographic conditions in the study 
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area at the times of the surveys are needed to improve our understanding of these 

findings. 

Our ability to identify seasonal distribution patterns and detect trends in 

population would be greatly enhanced with the completion of additional 

comprehensive surveys like those of 1980-83, particularly given recent analytical 

developments in line-transect methodology (e.g., the inclusion of covariates in 

detection functions) and cetacean-habitat modeling (i.e., spatial modeling using 

environmental predictor variables).  This study re-assessed the valuable data 

collected during the 1980-83 high-altitude surveys; however, this effort would have 

been enhanced if all of the original effort and environmental data had been archived 

for retrospective analyses such as these.  Researchers involved with the major 1980-

83 survey programs were aware of the importance of comprehensive effort and 

environmental data, e.g., sea state, and recorded this information in some form at the 

time of the surveys.  The computer database that was created for MMS almost 

twenty years after the surveys were completed is a valuable source of information 

and enabled our re-analysis.  However, some of the original data were lost in the 

interim.  This highlights the importance of thorough data archival processes and 

creation of detailed metadata, so that data collected during current research efforts 

can be reassessed as technological and analytical methods improve.   
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Table 2.1.  Comparison of MMS survey effort (km) and area (km2) for the 
geographic strata used to estimate cetacean density and abundance in this study as 
compared to those listed by Dohl et al. (1983).   
    

   This study: Total Northern 
North 

Central 
South 

Central Offshore 

Effort (km) 109,440 21,124 (19%) 40,485 (37%) 26,513 (24%) 21,318 (20%) 

Area (km2) 125,138 16,904 (13%) 28,573 (23%) 18,672 (15%) 60,989 (49%) 

   Dohl et al. 1983:     

Effort (km) 136,298 25,426 (19%) 50,247 (37%) 33,185 (24%) 27,440 (20%) 

Area (km2) 140,000 16,904 (12%) 28,573 (21%) 18,672 (13%) 75,851 (54%) 
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Table 2.2.  Species groups used for estimation of detection functions.  The detection 
function accounts for the reduced probability of detecting a group of animals as their 
distance from the transect line increases.  The number of groups sighted (n) is the 
total following application of both left (162 m) and right (species specific) truncation 
distances (RTD) and includes only those sightings for which perpendicular distances 
were recorded.  Effective strip width (ESW) = 1/f(0).   
 

 
Species1 

 
Group Category 

 
n f(0) 

CV 
(f(0)) 

RTD 
(km) 

      
group size 1-2 71 6.25 0.26 2.00 Dall's porpoise 
group size > 2 84 3.66 0.15 2.00 

      
Risso’s dolphin (Gg) single species 

sightings 
165 2.06 0.13 1.95 

      
Pacific white-sided dolphin (Lo) single species 

sightings 
82 2.40 0.16 1.50 

      
Northern right whale dolphin (Lb) single species 

sightings 
32 3.67 0.58 2.00 

      
Multiple: Gg, Lo, Lb multiple species 

sightings 
60 1.30 0.11 3.00 

      
Killer whale medium-large whale2 10 1.85 0.27 2.50 
      
Sperm whale medium-large whale 26 1.85 0.27 2.50 
      
Blue whale medium-large whale 9 1.85 0.27 2.50 
      
Fin whale medium-large whale 16 1.85 0.27 2.50 
      
Humpback whale medium-large whale 66 1.85 0.27 2.50 
      

1 In addition to the above, there were 54 sightings of unidentified cetaceans that were 
not included in the analyses. 

2 The medium-large whales were analyzed as one group. 
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Table 2.3.  Number of groups sighted (n) and mean group size (gs) for all identified 
cetacean species in the reprocessed database.  Note that some of the “n” values are 
higher than listed in Table 2.2 because there were sightings for which perpendicular 
distances were missing; these could not be used to estimate detection functions but 
were used to estimate densities.   
 
 
Species1 

 
  n 

 
  gs 

Dall's porpoise, Phocoenoides dalli  204 4.15 
Harbor porpoise, Phocoena phocoena 134† 1.96 
Risso’s dolphin, Grampus griseus 250 62.90 
Pacific white-sided dolphin, Lagenorhynchus obliquidens 156 170.35 
Northern right whale dolphin, Lissodelphis borealis 118 216.66 
Short-finned pilot whale, Globicephala macrorhynchus 3* 11.33 
Unid. pygmy/dwarf sperm whale, Kogia, spp. 1* 3.00 
Baird’s beaked whale, Berardius bairdii  11* 4.45 
Cuvier’s beaked whale, Ziphius cavirostris 3* 1.33 
Mesoplodon beaked whales, Mesoplodon spp. 1* 1.00 
Killer whale, Orcinus orca 16 6.31 
Sperm whale, Physeter macrocephalus 31 3.00 
Blue whale, Balaenoptera musculus 21 1.43 
Fin whale, Balaenoptera physalus 20 1.75 
Sei whale, Balaenoptera borealis 1* 2.00 
Humpback whale, Megaptera novaeangliae 124 3.04 
Gray whale, Eschrichtius robustus 383† 2.44 
Minke whale, Balaenoptera acutorostrata 2* 1.00 
Total 1,479 NA 
1   In addition to the above, there were 54 sightings of unidentified cetaceans 

that were not included in the analyses. 
* Excluded from analysis due to low sample size. 
† Excluded from analysis due to nearshore distribution. 
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Table 2.4.  Number of groups sighted (n) and mean group size (gs) by season for 
cetacean species for which density and abundance estimates were made.  The 
number of groups sighted is the total following application of both left (162 m) and 
right (species-specific; see Table 2.2) truncation distances and includes all sightings 
used to estimate densities, i.e., those for which perpendicular distances were 
recorded as well as a proportion of sightings missing distance information (see 
Methods: Density and Abundance Estimation).  For single species sightings of 
northern right whale dolphin and multiple species sightings of Risso’s dolphin, 
Pacific white-sided dolphin, and northern right whale dolphin, average group size 
within a truncated perpendicular distance was used to eliminate size bias (see 
Methods:  Density and Abundance Estimation).    
 

  Feb-April May-July Aug-Oct Nov-Jan 
Species Group         
 Category n gs n gs n gs n gs 

group size 1-2 10 1.60 14 1.71 31 1.61 21 1.90 
group size > 2 21 4.43 14 4.79 28 4.46 27 5.04 

Dall's 
porpoise  

        
single species 39 13.03 52 17.31 44 30.00 38 46.24 
multiple 
species 

15 161.89 14 161.89 16 161.89 3 161.89 
Risso’s 
dolphin  

        
single species 21 36.43 16 50.56 36 122.97 16 65.31 
multiple 
species 

12 264.75 13 264.75 14 264.75 8 264.75 
Pacific 
white-sided 
dolphin 

        
single species 9 124.00 1 124.00 9 124.00 14 124.00 
multiple 
species 

21 112.57 16 112.57 22 112.57 12 112.57 
Northern 
right whale 
dolphin 

        
med-large 
whale 

3 4.33 4 2.75 3 22.00 3 2.00 Killer whale 

        
Sperm whale med-large 

whale 
7 2.43 0 NA 5 9.00 18 1.67 

          
Blue whale med-large 

whale 
0 NA 0 NA 17 1.35 1 1.00 

          
Fin whale med-large 

whale 
0 NA 1 6.00 13 1.69 4 1.00 

          
Humpback 
whale 

med-large 
whale 

1 2.00 12 3.58 84 2.85 13 4.77 
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Table 2.5.  Comparison of seasonal density (D; number of animals/km2) and 
abundance (N) point estimates for the present study and those presented in Dohl et 
al. (1983).  Abundance estimates are for the entire study area; Dohl et al. assumed 
the study area = 140,000 km2 while the present study assumed the study area = 
125,138 km2.  The estimates for this study are based on a stratified analysis and are 
expected to be more accurate because several sources of bias were removed or 
minimized.  Estimates are provided in the seasonal divisions used by Dohl et al. 
(1983): winter = December-February, spring = March-May, summer = June -August, 
and fall = September-November.  Note that these seasons are different than those 
used in this study, so that the density and abundance estimates provided in 
subsequent tables are different than shown here.  
 
 Dec-Feb Mar-May June-Aug Sept-Nov 
Species1 D N D N D N D N 
 
Risso’s dolphin 

       

This study 0.0706 8,832 0.0431 5,397 0.0809 10,124 0.0678 8,485
Dohl et al. 1983 0.2132 30,000 0.1066 15,000 0.0924 13,000 0.1422 20,000
     
Dall’s porpoise     

This study 0.0071 885 0.0030 372 0.0086 1,080 0.0149 1,862
Dohl et al. 1983 0.0244 3,400 0.0256 3,600 0.0261 3,700 0.0622 8,750
      
Pacific white-sided dolphin    

This study 0.0745 9,319 0.0527 6,590 0.1610 20,142 0.2072 25,930
Dohl et al. 1983 0.2382 33,500 0.1869 26,000 0.2271 32,000 0.6120 86,000
      
Northern right whale dolphin    

This study 0.1286 16,094 0.0487 6,092 0.0862 10,785 0.2154 26,961
Dohl et al. 1983 0.44 61,500 0.21 29,000 0.19 27,000 0.27 37,500
 

1Included are those species for which Dohl et al. provided seasonal density estimates.  
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Table 2.6a. Minimum density estimates (D) and coefficients of variation (CV), by 
geographic stratum, for the most common cetacean species sighted during the MMS 
1980-83 aerial surveys.  Estimates do not include correction factors for perception or 
availability biases, g(0).  
 

    Feb-Apr    May-Jul    Aug-Oct    Nov-Jan 
Stratum D CV D CV D CV D CV 
Risso’s dolphin 
Northern 0.008 0.70 0.033 0.62 0.047 0.55 0.037 0.97 
North central 0.053 0.46 0.125 0.30 0.084 0.38 0.040 0.44 
South central 0.192 0.35 0.069 0.48 0.326 0.30 0.228 0.51 
Offshore 0.007 0.59 0.081 4.49 0.011 0.95 0.012 0.70 

Inshore Stratum  0.082 0.42 0.084 0.36 0.144 0.35 0.094 0.51 
Total study area 0.045 0.40 0.083 0.90 0.079 0.33 0.054 0.47 

Dall's porpoise 
Northern 0.005 0.49 0.002 0.72 0.009 0.42 0.019 0.33 
North central 0.006 0.39 0.012 0.29 0.027 0.24 0.016 0.27 
South central 0.017 0.30 0.003 0.60 0.009 0.37 0.012 0.43 
Offshore 0.000 0.00 0.005 0.53 0.008 0.43 0.007 0.52 

Inshore Stratum  0.009 0.34 0.007 0.38 0.017 0.32 0.016 0.31 
Total study area 0.005 0.34 0.006 0.35 0.013 0.30 0.011 0.29 

Pacific white-sided dolphin 
Northern 0.072 0.69 0.031 1.04 0.037 1.05 0.139 0.58 
North central 0.120 0.50 0.185 0.40 0.379 0.45 0.055 0.58 
South central 0.151 0.46 0.083 0.70 0.545 0.56 0.141 0.50 
Offshore 0.035 0.90 0.095 6.26 0.139 0.51 0.089 0.82 

Inshore Stratum  0.116 0.45 0.115 0.48 0.337 0.45 0.102 0.43 
Total study area 0.077 0.44 0.105 0.98 0.241 0.39 0.096 0.45 

Northern right whale dolphin 
Northern 0.105 0.99 0.013 1.02 0.031 0.75 0.029 0.74 
North central 0.128 0.69 0.047 0.45 0.063 0.43 0.100 0.81 
South central 0.211 0.68 0.084 0.71 0.256 0.71 0.259 0.95 
Offshore 0.013 1.00 0.054 4.67 0.272 0.98 0.237 1.10 

Inshore Stratum 0.146 0.71 0.049 0.50 0.111 0.57 0.128 0.86 
Total study area 0.081 0.66 0.052 1.16 0.189 0.87 0.181 1.02 
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Table 2.6a (continued). 
    Feb-Apr    May-Jul    Aug-Oct    Nov-Jan 

Stratum D CV D CV D CV D CV 
Killer whale 
Northern 0.000 0.00 0.000 0.00 0.000 0.00 0.001 0.90 
North central 0.001 0.74 0.001 0.88 0.006 1.04 0.000 1.03 
South central 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 
Offshore 0.000 0.00 0.000 0.00 0.000 1.03 0.000 0.00 

Inshore Stratum 0.001 0.87 0.000 0.95 0.003 1.04 0.000 0.77 
Total study area 0.000 0.87 0.000 0.95 0.002 0.94 0.000 0.77 

Sperm whale 
Northern 0.000 0.89 0.000 0.00 0.005 1.02 0.002 1.02 
North central 0.000 0.90 0.000 0.00 0.000 1.02 0.001 0.47 
South central 0.000 0.00 0.000 0.00 0.001 1.02 0.000 1.02 
Offshore 0.002 0.88 0.000 0.00 0.002 1.00 0.002 0.52 

Inshore Stratum 0.000 0.72 0.000 0.00 0.002 0.83 0.001 0.62 
Total study area 0.001 0.87 0.000 0.00 0.002 0.70 0.001 0.54 

Blue whale 
Northern 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 
North central 0.000 0.00 0.000 0.00 0.001 0.51 0.000 1.02 
South central 0.000 0.00 0.000 0.00 0.001 0.55 0.000 0.00 
Offshore 0.000 0.00 0.000 0.00 0.001 0.80 0.000 0.00 

Inshore Stratum 0.000 0.00 0.000 0.00 0.001 0.56 0.000 1.03 
Total study area 0.000 0.00 0.000 0.00 0.001 0.52 0.000 1.03 

Fin whale 
Northern 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 
North central 0.000 0.00 0.000 0.00 0.000 0.96 0.000 0.63 
South central 0.000 0.00 0.001 1.01 0.001 0.54 0.000 1.02 
Offshore 0.000 0.00 0.000 0.00 0.001 0.50 0.000 0.00 

Inshore Stratum 0.000 0.00 0.000 1.02 0.001 0.62 0.000 0.67 
Total study area 0.000 0.00 0.000 1.02 0.001 0.55 0.000 0.67 

Humpback whale 
Northern 0.000 0.00 0.000 1.03 0.001 1.03 0.000 0.00 
North central 0.000 0.00 0.001 1.02 0.020 0.38 0.005 0.70 
South central 0.000 1.02 0.004 0.62 0.004 0.51 0.000 1.02 
Offshore 0.000 0.00 0.002 0.68 0.002 0.54 0.000 0.00 

Inshore Stratum 0.000 1.03 0.001 0.67 0.010 0.53 0.002 0.81 
Total study area 0.000 1.03 0.002 0.59 0.006 0.48 0.001 0.81 
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Table 2.6b. Minimum abundance estimates (N) and coefficients of variation (CV), 
by geographic stratum, for the most common cetacean species sighted during the 
MMS 1980-83 aerial surveys.  Estimates do not include correction factors for 
perception or availability biases, g(0).  
 
 Feb-Apr May-Jul Aug-Oct Nov-Jan 
Stratum N CV N CV N CV N CV 
Risso’s dolphin 
Northern 131 0.70 552 0.62 792 0.55 628 0.97 
North central 1,517 0.46 3,561 0.30 2,389 0.38 1,142 0.44 
South central 3,590 0.35 1,294 0.48 6,078 0.30 4,258 0.51 
Offshore 399 0.59 4,947 4.49 679 0.95 724 0.70 

Inshore Stratum  5,237 0.42 5,406 0.36 9,258 0.35 6,028 0.51 
Total study area 5,636 0.40 10,353 0.90 9,937 0.33 6,752 0.47 

Dall's porpoise 
Northern 85 0.49 41 0.72 159 0.42 317 0.33 
North central 174 0.39 357 0.29 758 0.24 469 0.27 
South central 315 0.30 65 0.60 168 0.37 218 0.43 
Offshore 0 0.00 308 0.53 484 0.43 398 0.52 

Inshore Stratum  574 0.34 463 0.38 1,084 0.32 1,004 0.31 
Total study area 574 0.34 770 0.35 1,569 0.30 1,402 0.29 

Pacific white-sided dolphin 
Northern 1,215 0.69 532 1.04 628 1.05 2,345 0.58 
North central 3,427 0.50 5,281 0.40 10,838 0.45 1,580 0.58 
South central 2,828 0.46 1,553 0.70 10,174 0.56 2,628 0.50 
Offshore 2,152 0.90 5,810 6.26 8,500 0.51 5,424 0.82 

Inshore Stratum  7,469 0.45 7,366 0.48 21,640 0.45 6,552 0.43 
Total study area 9,621 0.44 13,176 0.98 30,140 0.39 11,976 0.45 

Northern right whale dolphin 
Northern 1,776 0.99 219 1.02 523 0.75 493 0.74 
North central 3,650 0.69 1,351 0.45 1,804 0.43 2,867 0.81 
South central 3,949 0.68 1,565 0.71 4,789 0.71 4,833 0.95 
Offshore 766 1.00 3,320 4.67 16,580 0.98 14,425 1.10 

Inshore Stratum 9,375 0.71 3,135 0.50 7,116 0.57 8,193 0.86 
Total study area 10,141 0.66 6,455 1.16 23,696 0.87 22,618 1.02 
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Table 2.6b (continued). 
 Feb-Apr May-Jul Aug-Oct Nov-Jan 
Stratum N CV N CV N CV N CV 
Killer whale 
Northern 0 0.00 0 0.00 0 0.00 12 0.90 
North central 35 0.74 27 0.88 182 1.04 5 1.03 
South central 0 0.00 0 0.00 0 0.00 0 0.00 
Offshore 0 0.00 0 0.00 23 1.03 0 0.00 

Inshore Stratum 35 0.87 27 0.95 182 1.04 18 0.77 
Total study area 35 0.87 27 0.95 205 0.94 18 0.77 

Sperm whale 
Northern 8 0.89 0 0.00 79 1.02 28 1.02 
North central 5 0.90 0 0.00 3 1.02 28 0.47 
South central 0 0.00 0 0.00 23 1.02 3 1.02 
Offshore 116 0.88 0 0.00 136 1.00 99 0.52 

Inshore Stratum 14 0.72 0 0.00 105 0.83 59 0.62 
Total study area 130 0.87 0 0.00 240 0.70 158 0.54 

Blue whale 
Northern 0 0.00 0 0.00 0 0.00 0 0.00 
North central 0 0.00 0 0.00 37 0.51 3 1.02 
South central 0 0.00 0 0.00 20 0.55 0 0.00 
Offshore 0 0.00 0 0.00 34 0.80 0 0.00 

Inshore Stratum 0 0.00 0 0.00 57 0.56 3 1.03 
Total study area 0 0.00 0 0.00 91 0.52 3 1.03 

Fin whale 
Northern 0 0.00 0 0.00 0 0.00 0 0.00 
North central 0 0.00 0 0.00 14 0.96 8 0.63 
South central 0 0.00 17 1.01 25 0.54 3 1.02 
Offshore 0 0.00 0 0.00 90 0.50 0 0.00 

Inshore Stratum 0 0.00 17 1.02 40 0.62 11 0.67 
Total study area 0 0.00 17 1.02 130 0.55 11 0.67 

Humpback whale 
Northern 0 0.00 3 1.03 10 1.03 0 0.00 
North central 0 0.00 17 1.02 559 0.38 149 0.70 
South central 4 1.02 67 0.62 79 0.51 8 1.02 
Offshore 0 0.00 115 0.68 136 0.54 0 0.00 

Inshore Stratum 4 1.03 87 0.67 648 0.53 157 0.81 
Total study area 4 1.03 202 0.59 784 0.48 157 0.81 
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Table 2.7a. Minimum seasonal density estimates (D) and coefficients of variation 
(CV), by year, for selected cetacean species sighted during the MMS 1980-83 aerial 
surveys for the inshore stratum.  Estimates do not include correction factors for 
perception or availability biases, g(0).  The total estimates for all years were 
calculated using standard variance-weighted formula and are thus different (i.e., 
generally biased high) than the inshore stratum totals presented in Table 2.6a.  
 
 Feb-Apr May-Jul Aug-Oct Nov-Jan 
Stratum D CV D CV D CV D CV 
Risso’s dolphin 
1980 0.085 0.47 0.126 0.36 0.185 0.39 0.114 0.76 
1981 0.050 0.42 0.039 0.43 0.150 0.36 0.079 0.62 
1982 0.153 0.41 0.093 0.39 0.122 0.36 0.090 0.49 
1983 (February only) 0.010 0.99 NA NA NA NA NA NA 

All years- Inshore  0.102 0.28 0.099 0.26 0.155 0.23 0.095 0.39 

Dall's porpoise 
1980 0.000 0.00 0.015 0.31 0.000 0.00 0.007 0.56 
1981 0.003 0.51 0.002 0.71 0.017 0.30 0.015 0.35 
1982 0.022 0.27 0.007 0.43 0.029 0.24 0.027 0.26 
1983 (February only) 0.017 0.55 NA NA NA NA NA NA 

All years- Inshore  0.017 0.28 0.012 0.27 0.024 0.21 0.023 0.22 

Pacific white-sided dolphin 
1980 0.036 0.88 0.170 0.48 0.907 0.52 0.024 1.01 
1981 0.085 0.55 0.047 0.99 0.161 0.46 0.181 0.42 
1982 0.238 0.45 0.139 0.51 0.179 0.45 0.086 0.59 
1983 (February only) 0.061 0.79 NA NA NA NA NA NA 

All years- Inshore  0.133 0.33 0.138 0.35 0.454 0.40 0.127 0.33 

Northern right whale dolphin 
1980 0.061 0.50 0.076 0.43 0.091 0.80 0.151 0.96 
1981 0.212 0.92 0.010 1.00 0.114 0.69 0.094 0.81 
1982 0.161 0.55 0.060 0.80 0.131 0.46 0.151 0.87 
1983 (February only) 0.121 1.46 NA NA NA NA NA NA 

All years- Inshore  0.154 0.52 0.063 0.34 0.121 0.40 0.135 0.63 
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Table 2.7a (continued). 
 Feb-Apr May-Jul Aug-Oct Nov-Jan 
Stratum D CV D CV D CV D CV 
Killer whale 
1980 0.000 0.00 0.001 0.88 0.000 0.00 0.000 0.00 
1981 0.001 0.76 0.000 0.00 0.008 1.04 0.000 0.83 
1982 0.000 1.01 0.000 0.00 0.000 0.00 0.000 1.04 
1983 (February only) 0.000 0.00 NA NA NA NA NA NA 

All years- Inshore  0.001 0.71 0.001 0.88 0.002 1.04 0.000 0.71 
Sperm whale 
1980 0.000 1.24 0.000 0.00 0.000 0.00 0.000 1.00 
1981 0.000 0.76 0.000 0.00 0.004 0.88 0.000 0.00 
1982 0.000 1.41 0.000 0.00 0.000 0.00 0.003 0.59 
1983 (February only) 0.000 0.00 NA NA NA NA NA NA 

All years- Inshore  0.000 0.72 0.000 0.00 0.002 0.88 0.002 0.57 

Blue whale    
1980 0.000 0.00 0.000 0.00 0.001 0.69 0.000 0.00 
1981 0.000 0.00 0.000 0.00 0.000 0.63 0.000 0.00 
1982 0.000 0.00 0.000 0.00 0.001 0.52 0.000 1.02 
1983 (February only) 0.000 0.00 NA NA NA NA NA NA 

All years- Inshore  0.000 0.00 0.000 0.00 0.001 0.43 0.000 1.02 

Fin whale    
1980 0.000 0.00 0.001 1.00 0.001 0.59 0.000 1.00 
1981 0.000 0.00 0.000 0.00 0.000 1.02 0.000 1.02 
1982 0.000 0.00 0.000 0.00 0.000 0.81 0.000 0.75 
1983 (February only) 0.000 0.00 NA NA NA NA NA NA 

All years- Inshore  0.000 0.00 0.000 1.00 0.001 0.49 0.000 0.56 

Humpback whale    
1980 0.000 1.01 0.002 0.82 0.002 0.51 0.001 0.63 
1981 0.000 0.00 0.000 1.01 0.012 0.39 0.005 0.87 
1982 0.000 0.00 0.002 0.66 0.015 0.44 0.001 0.65 
1983 (February only) 0.000 0.00 NA NA NA NA NA NA 

All years- Inshore  0.000 1.01 0.002 0.55 0.011 0.35 0.002 0.66 
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Table 2.7b. Minimum seasonal abundance estimates (N) and coefficients of 
variation (CV), by year, for selected cetacean species sighted during the MMS 1980-
83 aerial surveys for the inshore stratum.  Estimates do not include correction factors 
for perception or availability biases, g(0).  The total estimates for all years were 
calculated using standard variance-weighted formula and are thus different (i.e., 
generally biased high) than the inshore stratum totals presented in Table 2.6b.  
 
 Feb-Apr May-Jul Aug-Oct Nov-Jan 
Stratum N CV N CV N CV N CV 
Risso’s dolphin 
1980 5,441 0.47 8,112 0.36 11,859 0.39 7,310 0.76 
1981 3,197 0.42 2,533 0.43 9,630 0.36 5,088 0.62 
1982 9,816 0.41 5,995 0.39 7,853 0.36 5,784 0.49 
1983 (February only) 632 0.99 NA NA NA NA NA NA 

All years- Inshore  6,561 0.28 6,322 0.26 9,916 0.23 6,124 0.39 

Dall's porpoise 
1980 0 0.00 980 0.31 0 0.00 441 0.56 
1981 222 0.51 115 0.71 1,073 0.30 948 0.35 
1982 1,391 0.27 418 0.43 1,868 0.24 1,704 0.26 
1983 (February only) 1,087 0.55 NA NA NA NA NA NA 

All years- Inshore  1,084 0.28 754 0.27 1,562 0.21 1,456 0.22 

Pacific white-sided dolphin 
1980 2,286 0.88 10,929 0.48 58,159 0.52 1,542 1.01 
1981 5,423 0.55 3,040 0.99 10,300 0.46 11,592 0.42 
1982 15,298 0.45 8,888 0.51 11,498 0.45 5,532 0.59 
1983 (February only) 3,886 0.79 NA NA NA NA NA NA 

All years- Inshore  8,517 0.33 8,842 0.35 29,111 0.40 8,139 0.33 

Northern right whale dolphin 
1980 3,907 0.50 4,889 0.43 5,849 0.80 9,714 0.96 
1981 13,629 0.92 618 1.00 7,284 0.69 6,026 0.81 
1982 10,308 0.55 3,868 0.80 8,378 0.46 9,673 0.87 
1983 (February only) 7,756 1.46 NA NA NA NA NA NA 

All years- Inshore  9,908 0.52 4,038 0.34 7,760 0.40 8,645 0.63 
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Table 2.7b (continued). 
 Feb-Apr May-Jul Aug-Oct Nov-Jan 
Stratum N CV N CV N CV N CV 
Killer whale 
1980 0 0.00 85 0.88 0 0.00 0 0.00 
1981 87 0.76 0 0.00 482 1.04 22 0.83 
1982 8 1.01 0 0.00 0 0.00 28 1.04 
1983 (February only) 0 0.00 NA NA NA NA NA NA 

All years- Inshore  36 0.71 36 0.88 160 1.04 18 0.71 

Sperm whale 
1980 20 1.24 0 0.00 0 0.00 8 1.00 
1981 15 0.76 0 0.00 249 0.88 0 0.00 
1982 8 1.41 0 0.00 0 0.00 183 0.59 
1983 (February only) 0 0.00 NA NA NA NA NA NA 

All years- Inshore  11 0.72 0 0.00 103 0.88 119 0.57 

Blue whale    
1980 0 0.00 0 0.00 73 0.69 0 0.00 
1981 0 0.00 0 0.00 23 0.63 0 0.00 
1982 0 0.00 0 0.00 89 0.52 9 1.02 
1983 (February only) 0 0.00 NA NA NA NA NA NA 

All years- Inshore  0 0.00 0 0.00 66 0.43 3 1.02 

Fin whale    
1980 0 0.00 46 1.00 85 0.59 8 1.00 
1981 0 0.00 0 0.00 30 1.02 7 1.02 
1982 0 0.00 0 0.00 24 0.81 18 0.75 
1983 (February only) 0 0.00 NA NA NA NA NA NA 

All years- Inshore  0 0.00 16 1.00 60 0.49 13 0.56 

Humpback whale    
1980 20 1.01 124 0.82 97 0.51 48 0.63 
1981 0 0.00 8 1.01 746 0.39 343 0.87 
1982 0 0.00 120 0.66 969 0.44 92 0.65 
1983 (February only) 0 0.00 NA NA NA NA NA NA 

All years- Inshore  5 1.01 99 0.55 684 0.35 123 0.66 
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Table 2.8. Minimum species abundance estimates, and results of significance tests 
for differences in seasonal abundance during the 1980-83 aerial surveys, for the total 
study area.  Significance tests were first conducted between seasons with the greatest 
point differences; species with significant differences (p ≤ 0.05) were then tested 
using the next greatest point difference, and repeated until no significant differences 
were detected.  Key: n = number of sightings, N = abundance estimate (coefficients 
of variation for abundance estimates are provided in Table 2.6b), BCa CI(d) = BCa 
confidence interval (Efron and Tibshirani 1993) for the difference in abundance 
estimates, p-val = p-values for differences found to be significant at α ≤0.05.  
Seasons for which the comparison was made are coded as follows:  (sp) spring = 
February-April, (sm) summer = May-July, (fa) fall = August-October, (wi) winter = 
November-January.   
 

  Season 1 Season 2 CI(d) 
Species Seasons n N n N L95% U95% 

 
p-val 

Risso’s dolphin  sm - sp 66 10,353 54 5,636 -5,761 45,221  
         

fa - sp 59 1,569 31 574 158 2,172 0.03 Dall's porpoise  
 fa - sm 59 1,569 28 770 -249 2,136  
         

fa - sp 50 30,140 33 9,621 1,161 47,833 0.04 Pacific  
white-sided 
dolphin 

fa - wi 50 30,140 24 11,976 -3,419 53,413  

         
Northern right 
whale dolphin  

fa - sm 31 23,696 17 6,455 -14,096 101,534  

         
fa - wi 3 205 3 18 13 938 0.03 Killer whale  

      fa - sm 3 205 4 27 -2 1,076  
         
Sperm whale  fa - sp 5 240 7 130 -344 776  
         
Blue whale  fa - wi 17 91 1 3 30 231 <0.001 
         

fa - wi 13 130 4 11 31 320 0.003 Fin whale  
      fa - sm 13 130 1 17 14 325 0.04 
         

fa - sp 84 784 1 4 319 1,996 <0.001 
fa - wi 84 784 13 157 20 1,840 0.05 

Humpback  
whale    
      fa - sm 84 784 12 202 8 1,801 0.05 
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Table 2.9. Species seen, abundance estimates, and results of significance tests for 
differences in abundance for the inshore stratum between the MMS 1980-83 and 
SWFSC 1991-92 aerial surveys conducted during spring (Feb-April).   Key: n = 
number of sightings, N = abundance estimate, CV = coefficient of variation for 
abundance estimate, CI(d) = the BCa confidence interval (Efron and Tibshirani 
1993) for the difference in abundance estimates.  Note: results do not allow for either 
perception or availability bias. 
 

MMS 1980-83 SWFSC 1991-92 CI(d)  
Species1 n N CV n N CV L 95% U 95% 

 
 

Risso’s dolphin 51 5,237 0.42 4 16,337 0.61 -40,197 3,534  
          
Dall's porpoise 31 574 0.34 12 1,733 0.36 -2,837 -72 * 
          
Pacific white-sided dolphin 30 7,469 0.45 5 75,614 0.55 -162,054 549  
          
Northern right whale dolphin 29 9,375 0.71 3 2,367 0.82 -998 26,266  
          
Humpback whale 1 4 1.03 1 57 0.97 -207 12  
 
Additional species (no significance tests performed): 
Common dolphin 0 - - 2 21,926 0.80 - -  
          
Bottlenose dolphin 0 - - 1 54 1.03 - -  
          
Killer whale 3 35 0.87 0 - - - -  
          
Sperm whale 4 14 0.72 0 - - - -  
* = difference is significant (p = 0.04) 
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Figure 2.1.  The 92 predetermined transect lines for the Minerals Management Service 
aerial surveys (Dohl et al. 1983).  The lines were designed to survey systematically between 
the coast and approximately 90 nmi (167 km) offshore.  Approximately 40 of the lines were 
surveyed monthly from March 1980 to February 1983.  Scale: 1 degree of latitude = 111 km.  
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Figure 2.2.  Transect lines for the National Marine Fisheries Service Southwest Fisheries 
Science Center aerial surveys conducted in February-March 1991 and February-April 1992 
(Forney et al. 1995).  The lines extended approximately 100 nmi (185 km) offshore in 
central and northern California and 150 nmi (278 km) offshore in southern California.  
Scale: 1 degree of latitude = 111 km. 
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Figure 2.3a.  Flow diagram of analytical steps currently used to process line-transect 
cetacean survey data.  Note: correction factors for perception and availability biases 
were not incorporated into the revised 1991-92 density estimates used in this 
analysis. 
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Figure 2.3b.  Flow diagram of data analysis steps used to re-process MMS 1980-83 
line-transect cetacean survey data.  A key is included in the lower right portion of the 
diagram. 
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Figure 2.4.  Regions used for the geographically stratified density analysis.  The transect 
lines represent the planned survey lines for the 1980-83 aerial surveys.  The offshore study 
boundary is represented by the offshore extent of the strata and includes the furthest distance 
offshore that Dohl et al. (1983) surveyed during the three-year period.  Scale: 1 degree of 
latitude = 111 km. 
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Figure 2.5.  Distribution of perpendicular sighting distances and Hazard model 
fits for species/group categories used to analyze the 1980-83 reprocessed data.  
Detection probabilities are relative to the probability at the left truncation 
distance (162 m).  Sample sizes are shown in Table 2.2. 
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A COMPARISON OF CALIFORNIA CURRENT CETACEAN-HABITAT 

MODELS DEVELOPED USING IN SITU AND REMOTELY SENSED SEA 

SURFACE TEMPERATURE DATA 

 

by 

 

E.A. Becker, K.A. Forney, M.C. Ferguson, D.G. Foley, R.C. Smith, J. Barlow, 

and J.V. Redfern 

 

Abstract 

Generalized linear and generalized additive models were used to predict 

encounter rate and group size for 10 cetacean species in an approximate 818,000 km2 

area off California.  Models were evaluated to examine the performance of remotely 

sensed oceanographic data compared to in situ measurements.  In addition, 

performance of the two model types was compared.  Cetacean sighting data were 

collected by the Southwest Fisheries Science Center on four systematic line-transect 

surveys during the summer and fall of 1991, 1993, 1996, and 2001.  Predictor 

variables included a combination of temporally dynamic, remotely sensed 

environmental variables (sea surface temperature and measures of its variance) and 
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geographically fixed variables (water depth, bathymetric slope, and a categorical 

variable representing oceanic zone).  The explanatory and predictive power of 

different spatial and temporal resolutions of satellite data were examined and 

included in the models on a species-specific basis.   Alternative models were built 

using in situ analogs for sea surface temperature and its variance.  The remotely 

sensed and in situ models with the highest predictive ability were selected based on a 

pseudo-jackknife cross validation procedure.  Environmental predictors included in 

the final models varied by model, data type, and species, although overall 

explanatory power was similar.  Satellite-derived estimates of sea surface 

temperature variance were found to be more effective at characterizing frontal 

activity due to their ability to measure heterogeneity in two dimensions.  Cetacean-

habitat models developed using fairly coarse-scale satellite data are shown, for most 

situations, to have predictive ability that meets or exceeds models developed with 

analogous in situ data, suggesting that the former could be effective tools for 

resource managers with access to satellite data for large regions in near real-time.  

The predictive ability of cetacean-environment models was affected by the level of 

complexity of the oceanographic environment, because more data were required to 

parameterize models for species that inhabit diverse environments.  When sample 

size was small (≤ 40 sightings), the predictive power of generalized linear models 

built with in situ SST data exceeded that of the other models.   
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Introduction 

 
There has been a recent increase in the development of cetacean-habitat 

distribution models, to improve the interpretation of abundance trends (Forney 

2000), aid in the development of marine protected areas (Hooker et al. 1999; 

Cañadas et al. 2002), and increase understanding of cetacean-fisheries interactions 

(Torres et al. 2003; Kaschner 2004).  Many cetacean species respond to 

oceanographic variability by moving over large geographical distances, and 

cetacean-habitat models can help distinguish apparent declines in abundance from 

movement of animals out of an area in response to changing oceanographic 

conditions (Forney 1999).  In order to assess the effects of oceanographic variability 

on marine mammal abundance and distribution, environmental measures must be 

readily obtainable, ideally on a synoptic and repetitive basis, over broad ocean areas.  

Many of the recent quantitative analyses of species-environment relationships have 

been based on cetacean sighting and oceanographic data collected simultaneously 

from a ship (e.g., Hedley et al. 1999; Forney 2000; Ferguson et al. 2006).  Satellite 

data typically have been used in addition to in situ data or when equipment failure 

precluded the collection of along-track data (Davis et al. 1998; Baumgartner et al. 

2001; Davis et al. 2002; Hamazaki 2002).  However, if remotely sensed data can be 

shown to be as effective at capturing species-environment relationships as in situ 

data, they could improve the utility of predictive models given their synoptic spatial 

coverage and near real-time availability. 
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In situ sea surface environmental data that can be collected while a vessel is 

underway (e.g., temperature, salinity, pigments) are generally available at finer 

spatial and temporal resolutions than satellite-derived data.  In situ measurements of 

water column properties and presence of potential prey, which are generally 

collected on a coarser scale, are not obtainable from remotely sensed sources of data.  

However, shipboard surveys are expensive and, therefore, do not allow for repetitive 

surveys of large areas.  Aerial surveys can provide a cost-effective method for 

surveying large areas in quick succession; however, they typically do not allow 

direct, in situ measurement of oceanographic variables.  In this case, remote sensing 

can provide an alternate, comprehensive source of environmental data.  Cetaceans do 

not respond directly to environmental variables that can be sensed remotely (e.g., sea 

surface temperature [SST]), but rather they likely respond to factors such as 

variations in prey distribution and availability, distribution of conspecifics (e.g., for 

mating or cooperative foraging), or distribution of predators.  However, past studies 

have shown close relationships between cetacean sightings and physical proxy 

measures such as SST and chlorophyll (Smith et al. 1986; Reilly and Fiedler 1994; 

Forney 1999, 2000; Ferguson et al. 2006).  These correlative relationships can 

therefore be useful in building effective predictive models, which in turn may lead to 

increased understanding of the mechanisms driving cetacean-environment 

relationships.  If effective methods that incorporate remotely sensed data can be 

developed, current and historical aerial survey data can be analyzed within the 
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context of remotely sensed environmental variables to examine trends in species 

abundance and distribution over broad scales and varying resolutions. 

Generalized linear models (GLMs) and generalized additive models (GAMs) 

have been used effectively to model cetacean sighting rates (Hedley et al. 1999; 

Forney 2000) and cetacean density (Ferguson et al. 2006) as a function of 

environmental variables; however, the majority of ecological studies that provide a 

direct comparison of GAMs and GLMs are found in the field of vegetation science 

(e.g., Franklin 1998; Wilfried et al. 2003).  Further, there is a lack of comparative 

studies evaluating two or more statistical methods applied to the same data set 

(Guisan and Zimmermann 2000; Wilfried et al. 2003).  In this study, we developed 

both GAMs and GLMs to relate cetacean sighting data from shipboard surveys in the 

California Current region during summer and fall 1991-2001 to remotely sensed 

environmental data.  A separate set of GAMs and GLMs was constructed by 

replacing the satellite data with analogous in situ data collected during the shipboard 

surveys.  Models were built for 10 species with the greatest number of sightings in 

order to provide the most robust environmental models:  striped dolphin (Stenella 

coeruleoalba), short-beaked common dolphin (Delphinus delphis), Risso’s dolphin 

(Grampus griseus), Pacific white-sided dolphin (Lagenorhynchus obliquidens), 

northern right whale dolphin (Lissodelphis borealis), Dall’s porpoise (Phocoenoides 

dalli), sperm whale (Physeter macrocephalus), fin whale (Balaenoptera physalus), 

blue whale (Balaenoptera musculus), and humpback whale (Megaptera 

novaeangliae).  



 

 104

The purpose of this study was fourfold: 1) to examine the most effective 

temporal and spatial resolutions of remotely sensed predictors for species-

environment models of cetacean density; 2) to compare the predictive ability of 

GAMs and GLMs; 3) to compare the performance of models built using remotely 

sensed data to those built using analogous in situ data; and 4) to examine whether the 

patterns identified by our models are consistent with what has been described for 

these species from previous California cetacean-habitat studies.  The 2001 survey 

data used in this study were previously used for a preliminary comparison of GAMs 

built with remotely sensed and in situ environmental data (Norris 2004); however, 

that study did not assess predictive power and has not been published. 

 

Methods 

Field methods 

Cetacean sighting data used to construct the predictive models were collected 

off California during the summer and fall (late July through early December) of 

1991, 1993, 1996, and 2001 using systematic ship-based line-transect methods 

(Buckland et al. 2001).  Detailed descriptions of these research cruises and survey 

methods are available elsewhere (Hill and Barlow 1992; Mangels and Gerrodette 

1994; Barlow 1995; Von Saunder and Barlow 1999; Appler et al. 2004).  The 

amount of survey effort varied among years, but transect coverage was roughly 

uniform throughout the study area (Figure 3.1), and cetacean data collection 

procedures were consistent on all surveys (Kinzey et al. 2000; Barlow and Forney 
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2007).   In summary, two teams of three observers rotated at 2-hour intervals among 

starboard observer, port observer, and data recorder positions that were located on 

the flying bridge of the ship.  The starboard and port observers searched for animals 

using pedestal-mounted 25x150 binoculars (“big eyes”) while the data recorder 

searched using unaided eye and 7x50 handheld binoculars.  In addition to sighting 

data, changes in Beaufort sea state conditions were entered on a laptop computer 

connected to the ship’s navigation system. When cetaceans were detected, the ship 

typically diverted from the transect line to estimate group size and identify the 

species present.  All cetaceans sighted were identified to the lowest taxonomic level 

possible.  We used only sightings made while on systematic transect lines and 

identified to species for building the models. 

The in situ sea surface temperature data used as potential predictor variables 

in the comparison models were collected continuously during the line-transect 

surveys using a thermosalinograph with sensor at 3 m depth.  Details on the 

collection of in situ oceanographic data are provided by Philbrick et al. (1993, 2003). 

 

Analytical methods 

Data processing 

In order to create samples for modeling, cetacean survey data from the four 

shipboard surveys were separated into transect segments of approximately 5 km 

length, corresponding roughly to the finest resolution of satellite data used for this 

analysis.  Each continuous section of survey effort was divided into 5 km segments, 
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and any remaining shorter segments were randomly assigned positions along the 

trackline as follows: if the remaining segment was < 2.5 km, it was added randomly 

to one of the adjacent 5 km segments; if it was at least 2.5 km long, it was randomly 

assigned to a position along the trackline between the full 5-km segments.  If the 

entire continuous effort segment was < 5 km, it was treated as a separate segment 

regardless of length.  The resulting dataset comprised a total of 7,347 segments, with 

the majority (73%) equal to the target length of 5 km, 23% of 2.5-5 km or 5-7.5 km 

length, and a small portion (4%) less than 2.5 km long.  

Sighting data were summarized for each of the 10 species and included the 

total number of groups sighted and average group size per transect segment.  

Beaufort sea state affects the probability of detecting animals (Barlow et al. 2001), 

and an average sea state value was included as a continuous predictor variable in our 

models in order to account for sighting conditions.  Because the probability of 

detection decreases dramatically in sea states exceeding Beaufort 5 (Barlow et al. 

2001), the line-transect sighting parameter estimates derived from these survey data 

were based on effort in Beaufort 0-5 (Barlow 2003).  Therefore, for consistency, 

segments with average sea state values exceeding Beaufort 5 were eliminated from 

this analysis.  Water depth in each segment was obtained from the ETOPO2 2-

minute global relief data (U.S. Department of Commerce 2006), re-gridded to match 

the pixel resolution used for this analysis.  Slope was calculated as the magnitude of 

the bathymetry gradient using the gradient operator tool in GMT (Generic Mapping 

Tools; Wessel and Smith 1998).  Individual depth and slope values estimated at the 
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midpoint of each segment were retrieved using the “sample” tool in ArcGIS (version 

9.2, ESRI, Inc.).  Oceanic zone was included as a ranked categorical variable defined 

roughly by water depth: shelf = waters from the coast to 200 m deep; slope = waters 

between 200 m and 2,000 m deep; and abyssal plain = waters deeper than 2,000 m.   

Remotely sensed environmental data.  SST data (National Oceanic and 

Atmospheric Administration/National Environmental Satellite, Data, and 

Information Service/Pathfinder v5) were obtained via an OPeNDAP server using 

Matlab code that enabled remote, automated downloading of data for user-specified 

positions and resolutions.  Mean SST values were obtained for three temporal 

resolutions (1-day, 8-day, and 30-day composites centered on the day of the survey) 

at the finest available pixel resolution (0.05 degree or approximately 5.55 km) for 

initial analyses.  Mean values of SST also were obtained for six spatial resolutions: 

1) the pixel containing the sample midpoint (1 pixel; 5.55 km box or 30.80 km2), 2) a 

4-pixel box surrounding the sample midpoint (11.10 km box or 123.21 km2), 3) a 9-

pixel box surrounding the sample midpoint (16.65 km box or 277.22 km2), 4) a 16-

pixel box surrounding the sample midpoint (22.2 km box or 482.84 km2), 5) a 25-

pixel box surrounding the sample midpoint (27.75 km box or 770.06 km2), and 6) a 

36-pixel box surrounding the sample midpoint (33.3 km box or 1,108.89 km2).   

Coefficients of variation (CVs) of SST were calculated for the five spatial 

resolutions that included more than one pixel.   

We initially calculated correlation coefficients between all possible 

combinations of the six spatial resolutions of SST data and found them highly 
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correlated; the lowest R2 value of 0.98 (p-value < 0.0000) resulted from a regression 

of SST values extracted from the finest (1 pixel) to the coarsest (36 pixel average) 

resolution considered in this analysis.  To select which spatial resolution of SST to 

include as the best predictor variable, we built separate encounter rate and group size 

GAMs and GLMs for each species using only one SST resolution at a time and 

holding sample size constant.  We did not include all resolutions in any one model-

building process because regression models have difficulty distinguishing between 

highly correlated variables.  The only variables included in the list of potential 

predictors were SST (at a single resolution) and Beaufort sea state.  Models were 

constructed separately for datasets that excluded one of the four survey years, 

respectively, and then predictions made on the year left out of the model building 

process to yield an average squared prediction error (ASPE; Hastie and Tibshirani 

1990).  ASPE values were then summed across years for each of the six spatial 

resolutions.  Finer resolutions were more likely to result in missing SST data because 

of cloud cover; therefore, we selected the resolution that maximized sample size and 

yielded an ASPE sum within 5% of the best predictive model.  This 5% margin was 

selected arbitrarily because ASPE is itself a random variable, dependent on the 

specific samples included in the dataset.  

In situ environmental data.  Sea surface temperature data included in this 

analysis were limited to measurements collected while on the systematic transect 

lines.  We obtained average SST and CV(SST) estimates for all values within 2.775, 

5.550, 8.325, 11.100, 13.875, and 16.650 km of the segment midpoints to match the 
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spatial resolution of our satellite data (i.e., 5.55, 11.10, 16.65, 22.20, 27.75, and 

33.30 km).  For the models built using in situ data, we used the species-specific 

spatial resolutions selected for the satellite data analysis to ensure that the 

comparison was based on the most analogous predictor variables.  We also compared 

the satellite-derived and in situ measures of SST and CV(SST) by calculating 

correlation coefficients for each pair of values for each of the spatial resolutions. 

 

Model structure, development, and selection 

We developed both GLMs and GAMs using the same datasets in order to 

compare model fit and predictive power statistically, and to gain ecological insight 

into variables and functional forms (i.e., the relationship of the response variable to 

the predictor variable) included in each type of model.  Separate GLMs and GAMs 

were constructed to explain encounter rate and group size patterns for the 10 

cetacean species.   

GLMs are mathematical extensions of linear models that provide a more 

flexible family of regression models; they allow for non-linearity and non-constant 

variance structures in the data (McCullagh and Nelder 1989).  In a GLM, a function 

(the “link”) of the mean (μ) of the response variable is modeled as a sum of predictor 

variables (x1, x2,….xn) plus a constant (α):   

           ( )  += ∑
=

n

i
iii xlink

1
βαμ                                       (Eq. 3.1) 
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Each of the predictor variables may be transformed to represent nonlinear 

effects according to specified parametric functions (e.g., polynomial, exponential, 

logarithmic).  The right side of Eq. 3.1 is termed the “linear predictor” because it is 

linear in the parameters (α, β1,...,βn ).   

GAMs are nonparametric extensions of generalized linear models, sharing 

many of the same statistical properties (e.g., additive) without constraining the 

predictor variables to enter the model as a particular parametric form.  As with 

GLMs, a GAM is created using a link function defining the relationship between the 

mean of the response variable and the predictor variables:  

          ( ) ( )∑
=

+=
n

i
iii xflink

1
αμ                                       (Eq. 3.2) 

 
The term “additive” is used to describe the specific relationship among 

predictor variables (right side of Eq. 3.2): functions ( )xf , possibly nonparametric, of 

predictor variables are summed to obtain the predicted response values.   

The encounter rate and group size GLMs and GAMs were built using the 

step.gam function in the statistical software package S-PLUS (Professional Edition 

Version 6.0.2, Release 1 for Windows, Insightful Corp., 2001).  Following an 

approach developed by Ferguson et al. (2006), a stepwise forward/backward variable 

selection procedure was used in which the stepwise selection process occurred twice 

for each model in order to improve the dispersion parameter estimate used to assess 

the final model.   Models were constructed with both linear terms and polynomials 

(GLMs) or smoothing splines (GAMs) having up to three degrees of freedom.  
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Models built with greater than three degrees of freedom add unrealistic complexity 

to the functions and tend to be difficult to interpret ecologically (Forney 2000; 

Ferguson et al. 2006). 

Encounter rate models were built with the number of sightings per segment 

as the response variable.  The length of the segment was used as an offset in the 

models to standardize the expected encounter rate, accounting for variable segment 

length.  Encounter rate models were built with all segments where SST data were 

available for the species-specific spatial resolution selected.  In order to maximize 

sample size for the respective remotely sensed and in situ models, each model was 

built with as many segments for which the respective SST data were available.  The 

dispersion parameter, an unknown but constant parameter, relates the mean to the 

variance and is equal to one for Poisson distributions.  Encounter rates with cetacean 

groups are count data with a large number of zeroes and are expected to follow an 

over-dispersed Poisson distribution.  Therefore, quasi-Poisson encounter rate models 

were built using a log link function and a quasi-likelihood error distribution with the 

variance proportional to the mean (McCullagh and Nelder 1989).  Group size models 

were built using only those segments that contained sightings.  Group size models 

were assumed to follow a lognormal distribution and therefore were built using the 

natural logarithm of group size as the response variable with an identity link function 

(i.e., a classical linear model where the mean and the linear predictor are identical) 

and a Gaussian error distribution. 
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Following selection of the most appropriate temporal and spatial resolution 

of SST data (see “Remotely sensed environmental data” above), all encounter rate 

and group size models were built with the full suite of potential predictor variables: 

zone (a categorical variable), depth, bathymetric slope, SST (at the species-specific 

spatial resolution), CV(SST) (at the species-specific spatial resolution), and Beaufort 

sea state.  Akaike’s Information Criterion (AIC; Akaike 1973) was initially used by 

step.gam as the basis for selecting among potential combinations of predictor 

variables and varying degrees of freedom.  Models were constructed separately for 

datasets that excluded one of the four survey years, in turn. Data for 1993 were 

included in all model combinations because 1993 was the year with the warmest 

mean sea surface temperatures and was considered essential to capture the observed 

interannual variability in oceanographic conditions.  This initial stepwise model-

building process provided us with three potential encounter rate GLMs and GAMs 

and three potential group size GLMs and GAMs for each species and each of the two 

data types (i.e., satellite and in situ).  The “best” encounter rate and group size GLMs 

and GAMs were then selected based on a “pseudo-jackknife” cross validation 

process (Hastie and Tibshirani 1990) whereby each model selected in the first phase 

was then re-fit to the remaining combinations of (n-1)-year datasets and its 

predictive ability assessed by cross validation.  This process of cross validation on 

all model combinations produced four ASPE values for each of the two data types; 

the model with the lowest sum of ASPE values was selected as the best overall 

model.  For the encounter rate models, ASPE calculations were based on Anscombe 
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residuals to account for the quasi-likelihood error distribution (McCullagh and 

Nelder 1989).  In cases where the sum of the ASPE values was identical, the model 

that had the lower ASPE value when tested on the novel dataset was picked.  This 

cross-validation process allows differentiation among models that have good 

predictive ability, and surveys that were conducted when oceanographic conditions 

were similar.  The model selected based on the pseudo-jackknife process was then 

re-fitted to all four years of shipboard data to build the final predictive model.   

Density (number of animals per km2) for each species was estimated by 

incorporating the encounter rate and group size model results into the standard line-

transect equation (Buckland et al. 2001):  

            
)0(2

1)(
gESW

s
L
nD

⋅⋅
⋅⋅=                               (Eq. 3.3) 

where 
 

n/L  =  encounter rate (number of sightings per unit length of trackline in km) 

s   =  estimated mean group size 

ESW  =  effective strip half-width in km, or 1/f(0) where f(0) is the probability 

density function evaluated at zero perpendicular distance, i.e., on the 

trackline 

g(0)  =    the probability of detecting a group of animals on the trackline. 

 

To correct for the bias resulting from back-transforming the logarithmic 

values produced by the group size models, we used a ratio estimator (Finney 1941; 

Smith 1993).  We relied on published values of f(0) (or ESW) and g(0) for each 
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species as estimated from the specific survey data (Barlow 2003).  There are two 

separate components of g(0), perception bias and availability bias (Marsh and 

Sinclair 1989).  The g(0) values used by Barlow (2003) accounted for perception 

bias for all species and availability bias for beaked whales and sperm whales.  For 

the other species included in this analysis there is no expected availability bias 

during shipboard surveys, because they should surface at least once during the time 

it takes a ship to pass through the area in which they would be visible.  In most cases 

the range of Beaufort sea state conditions used to estimate the original parameters 

matched the range included in our analysis (i.e., 0-5).  However, for Dall’s porpoise 

published f(0) and g(0) values were available only for Beaufort conditions of 0-2.  

The application of these f(0) and g(0) values in our study, which included sea states 

of 0-5, is expected to cause a downward bias in our density estimates.  We 

constructed Dall’s porpoise models using data collected in sea state conditions of 0-5 

to provide a larger sample size and to ensure coverage of a larger portion of the 

study area.  Survey effort in Beaufort conditions of 0-2 was not distributed uniformly 

across the study area (see Figure 2 in Barlow and Forney, 2007).  We wanted to 

ensure that the survey data used for modeling purposes captured the range of habitat 

types in the study area.  Published f(0) and g(0) values for many species were 

stratified by group size and, for purposes of estimating densities, we incorporated 

weighted f(0) and g(0) values based on the number of small and large groups 

observed during the survey.   
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To compare model performance by type (GAM or GLM) and data source 

(satellite or in situ), we re-fitted each of the final models to a commonly shared 

dataset using all segments available for the species-specific SST resolution (i.e., 

segments for which both remotely sensed and in situ data were available) and 

calculated ASPE for each encounter rate and group size model.  In this case, 

predictions were based on application of the models to the data from which they 

were built, and thus provide an indication of explanatory power (i.e., goodness-of-

fit).  Encounter rate models were fitted to all segments available for the species-

specific SST resolution, while group size models were fitted to only those segments 

containing sightings for the species of interest (i.e., consistent with the approach 

used for building the models).  For each species, models with the best explanatory 

power were defined as those that minimized ASPE.   Another indication of model fit, 

deviance, is a measure of the discrepancy between the fitted model and the data, 

analogous to the residual sum of squares for regression models based on the 

Gaussian distribution.  The simplest model, the null model, contains no predictor 

variables and thus assigns all variation in the response variable to the random 

component.  Explained deviance (i.e., [null deviance – residual deviance]/null 

deviance, typically expressed as a percentage) was calculated for each of the 

encounter rate and group size models.   

For an additional comparison we used paired encounter rate and group size 

predictions from each model type (GAM/GLM) and data source (satellite/in situ) to 

estimate density by species for the total study area.  For each segment, model 
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predictions for encounter rate and group size were made based on the environmental 

conditions characterizing the segment.  The predicted values for encounter rate and 

group size were incorporated into the line-transect equation (Eq. 3.3) to produce a 

density estimate for each segment, weighted by segment length.  The weighted f(0) 

and g(0) values (see above) were averaged over all segments on a species-specific 

basis and incorporated into the segment density calculations.  The point density 

estimates were smoothed on a grid resolution of approximately 12 km using inverse 

distance weighting interpolation to the second power in Surfer software (version 8).  

Sightings from the survey data were plotted on the maps of predicted species 

densities to provide a means for qualitatively evaluating the models’ predictive 

power.  Finally, the density estimates for each segment were summed and the total 

divided by the sum of all segment lengths to calculate average species density for the 

study area.  Although spatial patterns are lost in this metric, the study area 

predictions were compared to density estimates derived by standard line-transect 

analyses of the actual sighting data, and allowed for a comparison of predictive 

power between model types and data sources. 

 

Results 
 

Barlow (2003) provides information on the search effort, number of species 

sighted, and associated line-transect abundance estimates for the 1991-2001 

shipboard surveys.  The 10 species we used for model development were selected to 

maximize sample size and provide a range of known or expected habitat preferences, 
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group size dynamics, and presence in the study area (i.e., year-round residents vs. 

seasonal visitors).  They included warm-temperate/tropical species (striped dolphin, 

short-beaked common dolphin), cold-temperate species (Pacific white-sided dolphin, 

northern right whale dolphin, Dall’s porpoise), a cosmopolitan species (Risso’s 

dolphin), baleen whales present year-round (fin whale) and only during summer 

feeding periods (blue whale, humpback whale), as well a large toothed whale species 

known to occur in highly variable group sizes (sperm whale).  The harbor porpoise 

(Phocoena phocoena), the gray whale (Eschrichtius robustus), and the bottlenose 

dolphin (Tursiops truncatus) were excluded from this analysis because they typically 

occur within a narrow coastal band and are generally assessed using focused surveys 

(Forney 1999; Buckland et al. 1993; Carretta et al. 1998).   Other species 

encountered during the surveys had too few sightings for modeling.  

 

Temporal and spatial resolution of satellite-derived SST data 

The encounter rate and group size models built using each of the three 

temporal resolutions (1-day, 8-day, and 30-day composites at 5.55 km/30.8 km2 

spatial resolution) of satellite-derived SST data enabled a comparison of sample size 

and predictive power.  Due to persistent cloud cover off the California coast, 1-day 

composites lacked sufficient data to build robust models (e.g., SST data at this 

resolution were available for less than 15% of our 2001 dataset).  The 30-day SST 

composites had good explanatory ability as indicated by the percent of explained 

deviance for each of the (n-1)-year models, which often exceeded that of models 
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built with 8-day composite SST data.  Predictive ability, however, as evaluated by 

each (n-1)-year model’s predictions for the year left out of model building, was poor 

at the coarser resolution.  A correlation analysis showed high correlation between the 

1-day and 8-day SST values (R2 = 0.96), indicating that the 8-day composites 

provided adequate coverage while maintaining fairly consistent representation of 

average conditions on the day of the survey.  Based on this evaluation, we selected 

8-day running average SST composites centered on the date of each survey segment.     

Of the total 7,347 segments in our dataset, more than 35% were eliminated 

due to missing satellite data at the finest spatial resolution (single pixel) while less 

than 17% were eliminated at the coarsest spatial resolution (maximum of 36 pixels).  

Models were evaluated using each of the six SST spatial resolutions to enable a 

comparison of predictive power for each of the 10 species and to maximize our 

sample sizes for modeling.  For Risso’s dolphin, smoothing functions and 

polynomials in the group size GAM and GLM, respectively, produced unrealistic 

values when trying to predict the sizes of groups observed during the 1996 survey.  

In that year, there was one sighting in waters of 12o C, which was colder than the 

minimum temperature observed in the other three survey years (14.5o C).  Therefore, 

we restricted the models for this species to linear terms when selecting the best SST 

spatial resolution.  Once the SST resolution was selected, polynomials and 

smoothing functions were allowed in the list of potential predictors for the model 

selection process; only one of the initial model fits was built without the 1996 data, 

and we wanted the models to be built with all potential predictor variables.   
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For three species (northern right whale dolphin, Dall’s porpoise, and fin 

whale) the SST resolution with the highest predictive ability for the encounter rate 

GAM was different from that of the encounter rate GLM.  In these instances, we 

selected the spatial resolution based on the combined sum of ASPE values from the 

GAMs and GLMs.  For all species, ASPE values between years showed much 

greater variation than between SST spatial resolution, consistent with scale analyses 

conducted with in situ data in the eastern tropical Pacific (Redfern et al. in review).  

For most species, predictive ability was higher at coarser spatial resolutions (Table 

3.1).  Although CV(SST) values for the five potential spatial resolutions were not as 

highly correlated as were SST values (R2 values ranged from 0.26 to 0.90), a similar 

analysis was conducted to select which resolution would be included in the list of 

potential predictor variables.  For a few of the species such as humpback whale, the 

“best” CV(SST) spatial resolution was much finer than the “best” spatial SST 

resolution (Table 3.1).  The final datasets for each species consisted of the number of 

segments with available SST data for each species-specific spatial resolution; for all 

species combined, approximately 17% more sightings were available for building the 

in situ models than for models based on remotely sensed SST (Table 3.2). 

A correlation analysis of the remotely sensed and in situ SST data indicated 

fairly consistent and high correlation across all spatial scales.  In contrast, 

correlations between CV(SST) values were weak and increased slightly with 

increasing spatial scale (Table 3.3).  
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Encounter rate and group size models 

Following data processing, the lengths of the 7,347 segments in our dataset 

varied from 0.06 to 7.5 km, with the majority (> 73%) equal to 5 km.  Encounter rate 

GAMs and GLMs were built using segment length as an offset to standardize the 

expected encounter rate, accounting for variable segment length.  However, we 

found that the theoretical offset relationship was not valid because short segments (< 

2.5 km) tended to occur in high density areas, particularly for those species that 

required off-effort group size estimates.  To address this potential bias, we 

considered excluding all segments < 2.5 km long; however, excluding the short 

samples would eliminate much of the encounter rate signal.  Given that less than 4% 

of the total segments used for modeling were less than 2.5 km long, the potential bias 

introduced was presumed to be small and we thus included all segments in our 

analyses, regardless of length. 

Models fitted using GAMs and GLMs were similar to each other in 1) the 

selection of the satellite-derived SST spatial resolution, and 2) the pseudo-jackknife 

cross validation analyses performed for the remotely sensed and in situ models.  In 

most cases the final GAM and GLM included the same variables with similar 

functional relationships between predictor and response variables, particularly for 

those variables having the greatest effect (identified by the largest change in the 

mean response) (Tables 3.4a and 3.4b; Appendix A).  For example, for short-beaked 

common dolphin the encounter rate GAM and GLM built with in situ data (Table 

3.4b, Figure 3.2) both included four predictor variables, three of which were shared 
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by both models (zone, SST, and Beaufort sea state), and one that varied by model 

type (depth vs. slope).  However, the variables that differed between the GAM and 

GLM had very little effect on the response variable relative to the other predictors, as 

indicated by the fairly flat function produced by both depth (GAM) and slope (GLM) 

when plotted on a common y-axis scale (Figure 3.2).  In both models, SST had the 

greatest effect on short-beaked common dolphin encounter rates, which dropped 

notably in water temperatures below about 16o C.  The zone variable indicated more 

encounters with this species are expected in slope waters (200-2,000 m deep), while 

sea state had a minor effect on detection probability.  

Variables that had the greatest effect on encounter rate across species were 

SST and depth.  Beaufort sea state was also included in the majority of encounter 

rate models, confirming this variable’s effect on detection probability.  SST was a 

key variable for seven of the ten species considered in this analysis (Appendix A).  

For four of these species (Pacific white-sided dolphin, northern right whale dolphin, 

Dall’s porpoise, and humpback whale), the models indicate that encounter rates are 

higher at relatively lower temperatures.  For striped dolphin and short-beaked 

common dolphin, encounters are shown to increase at relatively higher temperatures.  

The encounter rate models for fin whale show most encounters in moderate-

temperature waters (14-19o C).  Depth was a key variable in the encounter rate 

models for six species.  Encounters with four of these species (Pacific white-sided 

dolphin, Dall’s porpoise, humpback whale, and blue whale) are shown to increase in 

relatively shallower waters, whereas encounters with two species (striped dolphin 
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and sperm whale) increase in relatively deeper waters (Appendix A).  Details on 

each of the predictor variables and their relationship to species-specific encounter 

rates and group sizes are provided in the discussion section.   

For species that showed variation between the two model types, the 

encounter rate GAMs were generally more complex, i.e., they included more terms 

and higher degrees of freedom, than the equivalent GLMs.  The group size models 

typically included fewer terms than the encounter rate models and, with the 

exception of northern right whale dolphin, the final GAMs and GLMs built with 

remotely sensed data had identical predictors.  Predictor variables in the group size 

models built with in situ data showed more variation between model type.   

As expected, the encounter rate data were over-dispersed relative to a 

Poisson distribution in the majority of models.  Dispersion parameters for the 

remotely sensed models ranged from 1.03 to 2.85 for the GAMs and 1.03 to 4.81 for 

the GLMs, with the exception of Pacific-white-sided dolphin (0.366 for the GAM 

and 0.461 for the GLM).  For the encounter rate models built with in situ data, 

dispersion parameter estimates ranged from 0.869 to 3.68 for the GAMs and 0.983 to 

3.68 for the GLMs; for Pacific white-sided dolphin the dispersion parameter was 

0.911 for the GAM and 0.435 for the GLM.    

The percentage of deviance explained by the final encounter rate models built 

with remotely sensed data ranged from 4% (sperm whale) to 39% (Dall’s porpoise).  

Corresponding figures for the final group size models ranged from 1% (humpback 

whale) to 30% (Pacific white-sided dolphin) (Table 3.5).  The explained deviance of 
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models built with in situ data ranged from 2% (sperm whale) to 38% (Dall’s 

porpoise) for the encounter rate models and from 4% (humpback whale) to 43% 

(Pacific white-sided dolphin) for the group size models (Table 3.5).  Model 

performance as indicated by ASPE differed between species both in terms of model 

type and data source.  However, neither model type (GAM/GLM) nor data source 

(remotely sensed/in situ) consistently performed better overall (Table 3.5).  For 

example, for the encounter rate models, ASPE values were lower for six of the 

GAMs and lower for eight of the GLMs (ASPE values were identical in the 

remaining six cases).  For the group size models, ASPE values were lower for three 

of the GAMs and lower for four of the GLMs (ASPE values were identical in the 

remaining 13 cases).  When comparing data source, for the encounter rate models, 

ASPE values were lower for ten of the models built with remotely sensed data and 

lower for seven of the models built with in situ data (ASPE values were identical in 

the remaining three cases).  For the group size models, ASPE values were lower for 

nine of the models built with remotely sensed data and lower for 11 of the models 

built with in situ data.  In sum, encounter rate models built with remotely sensed data 

showed slightly better performance (higher explained deviance and lower ASPE 

values) than those built with in situ data, while the reverse was true for the group 

size models.   

To estimate overall density within the study area, we incorporated weighted 

f(0) and g(0) estimates based on the number of small and large groups observed 

during the cruises (Table 3.6).  For most of the species, particularly those with the 
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greatest number of sightings, density estimates were similar for both GAMs/GLMs 

and satellite/in situ data (Table 3.7).  However, for species with ≤ 40 sightings 

(Pacific white-sided dolphin, northern right whale dolphin, and sperm whale), 

density estimates from models built with in situ SST data were much closer to 

density estimates derived from the observed data.  For those three species, GLMs did 

better than GAMs.  Smoothed density plots for the remotely sensed and in situ 

models that had the greatest differences in predicted/observed density estimates 

(Pacific white-sided dolphin remotely sensed GAM and in situ GLM) show obvious 

dissimilarities, while those that differed least (Dall’s porpoise GAMs) are very 

similar (Appendix B).    

 

Discussion 
 
Spatial resolutions of SST and CV(SST) 
 

Our SST spatial resolution analysis for the satellite-derived data provides 

further evidence of the high level of interannual variability in the study area.  ASPE 

values showed much greater variation between years than between SST resolutions, 

consistent with scale analyses conducted with in situ data (Redfern et al. unpublished 

analyses).  For all species, the encounter rate and group size models showed similar 

functional relationships between SST and the response variables across spatial resolution.  

However, for the majority of species, the greatest predictive ability was observed for 

the coarsest SST resolution (36 pixels or approximately 1,109 km2).  There is a lack 

of precision in both the sighting and satellite positions that may be better represented 
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by coarser spatial resolutions.  In addition, there is a temporal offset between the 

ship survey and satellite data acquisition.  In the study area, upwelled water is moved 

offshore by Ekman transport and south by the California Current, which has a 

surface velocity of approximately 9 cm/second (Lynn and Simpson 1987).   The 

spatial displacement of surface water is thus on the order of 10 km per day.  A 

particle of water could travel 40 km over the temporal resolution (8-day composites 

centered on the day of the survey) used in this study.   

Ecologically it is reasonable that highly mobile species such as cetaceans are 

filtering out finer resolution “noise” and responding to broad-scale patterns in SST 

and other environmental factors.  These findings are consistent with results from a 

scale analysis of cetacean habitat models for the eastern tropical Pacific.  In those 

models, which used in situ environmental data, model fit was best with 160 km 

spatial resolution, the largest resolution considered (Redfern et al. in review).  Future 

analyses using satellite data should investigate the predictive power of spatial 

resolutions greater than those used here. 

The predictive ability of different spatial resolutions of satellite-derived 

CV(SST), which we used as a proxy for frontal regions, was more variable than that 

of SST.  For many species, the best CV(SST) spatial resolution was among the finer 

resolutions considered in this study (Table 3.1), perhaps reflecting the importance of 

localized upwelling events or small-scale frontal features.     
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Model performance 

For each of the 10 species considered in this analysis, we evaluated the 

performance of four models (an encounter rate GAM and GLM and a group size 

GAM and GLM) built with two types of SST data (remotely sensed and in situ), for 

a total of eight models per species.  To assess model performance, we examined 

explanatory power (based on explained deviance and ASPE) and predictive power 

(based on a comparison of predicted to observed density estimates).  We also 

examined whether the distribution patterns identified by the models (based on key 

variables and their functional forms) were consistent with what has been described 

for these species from previous studies.  We define a key predictor variable as one 

that has a large effect on the response variable relative to the other predictors, 

evident by large changes in the mean response over the range of the variable.  (The 

GAM and GLM plots included in Appendix A are, for each species and each 

encounter rate and group size model, all plotted on a common y-axis scale.  Each 

scale is relative to the variable having the largest y-axis range that was not 

influenced by a small number of outlying points.  Non-key variables have slopes that 

approach zero.) 

Explanatory power.  The explanatory power of our encounter rate and group 

size GAMs and GLMs was very similar, and overall results were comparable for the 

two model types (Table 3.5).  Our results are consistent with those of Franklin 

(1998), who found that GAMs and GLMs had similar accuracy when used to predict 
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the distribution of shrub species in southern California.  GAMs are less restrictive 

than GLMs, and their use in ecological studies has increased with the recognition 

that species abundance should not be expected to vary linearly or monotonically with 

habitat gradients (Austin 2002; Oksanen and Minchin 2002).  GAMs allow the data 

to dictate the form of the relationship between the response and predictor variables, 

which can be advantageous when investigating ecological relationships (Forney 

2000).  However, GAMs are often more difficult to interpret than GLMs and the 

shape of the smoothed GAM must be assessed subjectively.  By restricting our level 

of smoothing to three degrees of freedom, we found that the functional forms of the 

variables selected by model type were relatively consistent.  Further, based on 

thorough investigations of our data, we believe that three degrees of freedom are 

sufficient to capture the ecologically relevant patterns in the data (Forney 

unpublished analyses; Ferguson et al. in prep.). 

Models built with remotely sensed and in situ measures of SST and its 

variance also exhibited similar explanatory performance as evident from a 

comparison of explained deviance and ASPE (Table 3.5).  As noted above for the 

GAM and GLM comparison, there were some differences for some species, but 

performance was not consistently better for models built with one of the data 

sources.  Overall, encounter rate models built with remotely sensed data tended to 

have lower ASPE values on a species-by-species basis, while models built with in 

situ data tended to have lower ASPE values for the group size models.    
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SST.  SST was a key variable in the encounter rate models that explained the 

most deviance (> 15%), i.e., those for the Pacific white-sided dolphin, northern right 

whale dolphin, Dall’s porpoise, and humpback whale.  (Table 3.5 shows the 

proportion of deviance explained by each model, and Table 3.4 shows the variables 

included in each model; Appendix A shows which of those variables were key 

variables.)  In all models for a given species that included SST, the basic functional 

form of the variable was similar between both model type (GAM/GLM) and data 

source (remotely sensed/in situ).  This was not surprising given the correlation 

between remotely sensed and in situ SST values.  These results indicate that 

remotely sensed measures of SST can be used effectively in place of in situ measures 

in GAMs and GLMs and achieve fairly consistent results.  

CV(SST).  There was a relatively weak correlation between the remotely 

sensed and in situ values of CV(SST) at larger spatial scales and essentially none at 

smaller scales (Table 3.3).  This difference is likely due to the different dimensions 

over which SST variation was calculated: in situ variation was calculated from 

along-track SST measures, reflecting a roughly linear change (one dimensional 

variation), while remotely sensed measures reflect two-dimensional variation at the 

various spatial scales.  This difference was most apparent in the group size models 

for the fin whale, where the functional form of CV(SST) at the 16.65 km spatial 

resolution differed between in situ and remotely sensed models.  For the portion of 

the function where the standard error was smallest, the in situ models showed group 

size increasing as SST variation decreases.  In contrast, the remotely sensed models 
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predicted an almost linear increase in group size with increasing SST variation, 

suggesting that fin whales congregate at localized frontal regions.  Models built with 

remotely sensed data had lower ASPE values and better predicted/observed density 

ratios than the models built with in situ data, suggesting that remotely sensed data 

may be better suited for characterizing frontal activity (for further discussion see “fin 

whale” in the following “Distribution Patterns” section).   

Zone and Depth.  We considered zone as a potential predictor in both the 

encounter rate and group size models to investigate whether a categorical variable 

representing broad oceanographic regions was more effective at capturing species 

distribution patterns than a continuous depth variable. Results were mixed for both 

model type and data source, as some of the final models included zone, some 

included depth, and others included both.  We found that, while the zone variable 

sometimes was an effective predictor (see “blue whale” in the following section), it 

was not consistently better than depth alone.  When final models included both depth 

and zone as predictors, due to their correlation, in some cases one of the variables 

appeared to be included as noise.  For example, the Dall’s porpoise encounter rate 

GAM built with remotely sensed data included depth, indicating that most 

encounters were in waters less than 2,000 m deep (Appendix A).  This result was 

consistent with Dall’s porpoise encounter rate models built with in situ data (Forney 

2000).  However, our remotely sensed GAM included zone in addition to depth, and 

zone appeared to show the opposite effect on the response variable (i.e., highest 

encounters in waters deeper than 2,000 m).  It is notable that during the stepwise 
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model building process, depth was the second variable to enter the model, and 

helped to capture much of the explained deviance (i.e., the difference in AIC = 

68.478 when depth entered the model).  In contrast, zone was the last variable to 

enter the model and explained very little deviance compared to the same model with 

zone excluded (i.e., the difference in AIC = 0.007).  It is possible that in some cases 

a second variable that indicates an opposite trend can be meaningful and suggest that 

the functional form for the first variable needs amendment.  However, in this case 

the AIC values are not significantly different with the inclusion of the zone variable, 

and based on AIC we might choose to keep zone out of the model.  Regression 

models have problems distinguishing between effects of highly correlated variables, 

and in these instances it is crucial to examine results with caution.   

Slope.  Bathymetric slope was included in the encounter rate and group size 

models for some species, but it was not a key variable in any model.  These results 

differ from those of past studies that found relationships between cetaceans and 

bathymetric slope (Hui 1979; Baumgartner 1997; Baumgartner et al. 2001).  The 

difference in results may be attributable to among-study differences in scale, as 

model results often are dependent on the scale at which data are collected and 

analyzed (Wiens 1989). 

 Beaufort Sea State.  The prevalence of Beaufort sea state in many of the 

encounter rate and group size models highlights the importance of accounting for 

environmental effects on the detectability of cetaceans.  This was clearly evident in 

the Pacific white-sided dolphin models, where inclusion of Beaufort sea state 
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increased model predictive performance (see “Predictive Power”).  Future research 

should investigate whether the inclusion (either in the encounter rate or the sighting 

parameter models) of other factors known to affect the likelihood of detecting 

cetaceans, e.g., glare, visibility, etc. (Barlow et al.  2001), might improve the 

predictive performance of habitat models. 

Predictive Power.  True predictive power only can be evaluated using 

independent data, i.e., not used in constructing the models.  However, the pseudo-

jackknife cross validation process we used to build and select models inherently 

provided a measure of prediction, because one year was treated as “novel” in each of 

the jackknife iterations.  We also assessed predictive performance by comparing our 

model-based density predictions to density estimates derived from conventional line-

transect analyses.  The model-based density predictions were calculated based on the 

combined predictions from the respective encounter rate and group size models, thus 

providing an overall evaluation of predictive performance between GAMs/GLMs 

and satellite/in situ data.  In addition, our density measures were based on 

application of the group size models to all segments in the dataset, whereas goodness 

of fit of the group size models was based only on those segments used to build those 

models (i.e., the segments containing sightings).  In general, we saw relatively good 

agreement between the observed and predicted values.   

Density predictions for striped dolphin, short-beaked common dolphin, 

Dall’s porpoise, fin whale, blue whale, and humpback whale were very close to 

densities estimated directly from the sighting data.  The ratio of predicted/observed 
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values ranged from 0.968 to 1.041 with the exception of the remotely sensed GLM 

for short-beaked common dolphin (0.900).  Also, performance was similar for 

GAMs vs. GLMs and remotely sensed vs. in situ data (Table 3.7).  For all those 

species except striped dolphin (n = 47), greater than 75 sightings were used to build 

the models. 

In contrast, all models built for Risso’s dolphin exhibited poor predictive 

performance; predicted density estimates were greater than 27% higher than 

estimates from the observed data.  This was consistent with the low explained 

deviance for both encounter rate and group size models (less than 8%).  In addition 

to relatively small sample size (n = 70), each Risso’s dolphin model contained only 

one linear predictor, with depth affecting encounters and SST affecting group size.  

This was the only species for which models were identical between type 

(GAM/GLM) and data source (remotely sensed/in situ).  The Risso’s dolphin models 

provided an opportunity for a direct comparison between models built with remotely 

sensed and in situ SST data; while both over-predicted density relative to the density 

estimate based on the observed data, predictions based on the in situ models were 

about 7% closer.  The in situ dataset included lower temperatures than the remotely 

sensed measures, as evident in the Risso’s dolphin group size models (Appendix A).  

This probably served to increase their predictive power because the models built 

with in situ data included a greater temperature range.      

Models with the largest range in predictive ability were apparent from the 

density predictions for the three species with the fewest sightings; Pacific white-
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sided dolphin (n = 25), northern right whale dolphin (n = 40), and sperm whale (n = 

37).  In all cases, density predictions derived from the in situ GLMs were the most 

similar to density estimates from the observed data.  The most extreme case was for 

Pacific white-sided dolphin, the species with the fewest sightings available for 

modeling.  For that species, the ratio of predicted/observed density estimates ranged 

from 0.43 (in situ GAM) to 0.968 (in situ GLM).  This result was surprising given 

that explained deviance was the highest of any of the group size models, and the 

third highest for the encounter rate models (Table 3.5).  The in situ GLM’s superior 

performance relative to the other models may be due to the inclusion of Beaufort sea 

state as a predictor variable in the encounter rate model; it was absent from all the 

other encounter rate models.  In addition, the increased predictive performance noted 

for the in situ GLMs relative to the other models could be due in part to the increased 

sample size used for building the models; for these three species, there were 23% to 

39% more sightings available for building the in situ vs. the remotely sensed models 

(Table 3.2).   

In addition to sample size, the predictive ability of cetacean-environment 

models is affected by the level of complexity of the oceanographic environment.  

More data are required to parameterize models for species that inhabit diverse 

environments.  For example, despite small sample size (n = 47), all the models for 

striped dolphin had ratios of predicted to observed density estimates that approached 

one (Table 3.7).  Striped dolphins are found in tropical and warm-temperate offshore 

waters (Perrin et al. 1994), and the key predictor variables included in the models, 
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depth and SST, captured this pattern adequately with few data.  In contrast, Pacific 

white-sided dolphins occur primarily in shelf and continental slope waters off 

California that are oceanographically more complex (e.g., highly variable 

bathymetry, water temperature, etc.), and more data are required for model 

parameterization.   

Data loss due to cloud cover is one of the main disadvantages associated with 

using satellite data from passive infrared sensors such as the Advanced Very High 

Resolution Radiometer (AVHRR).  In the California study area, persistent cloud 

cover is often associated with coastal upwelling areas in summer, indicating that 

models built with remotely sensed data are somewhat habitat-dependent.  Satellite-

derived SST data were available for only 67% of the database segments that included 

sightings of Dall’s porpoise (Table 3.2), a species known to be associated with 

coastal, upwelled water (Forney 2000 and this study).  In contrast, these data were 

available for 80% of the segments containing sightings of the short-beaked common 

dolphin, a species associated with warmer, offshore water (Forney 2000 and this 

study).   

 

Distribution patterns 
 

To assess the ability of the models to identify species-environment 

relationships that are consistent with known distribution patterns, key variables and 

their functional forms are discussed separately for each species below.  Maps of 

predicted species densities and actual sighting locations provide a visual 
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representation of each model’s ability to capture the spatial distribution pattern of 

each species (Appendix B).   

Striped dolphin.  Despite relatively low explained deviance in the models for 

striped dolphin (Table 3.5), the density predictions for this species were all very 

close to the observed density estimate (Table 3.7).  This result is similar to that from 

a study using GAMs to estimate striped dolphin densities in the western 

Mediterranean (Gomez de Segura 2007).  Inspection of the final models for this 

species revealed that the functional forms of key variables are consistent with known 

distribution patterns.  As noted above, striped dolphins are found in tropical and 

warm-temperate offshore waters (Perrin et al. 2004), and the key predictor variables 

included in the models, depth and SST, effectively predicted greater numbers of 

encounters and animals in relatively warm, deep waters.  Smoothed density plots 

confirm that the models captured the spatial distribution patterns of striped dolphin 

in the study area (Appendix B.a).    

Short-beaked common dolphin.  As for the striped dolphin, the models for 

short-beaked common dolphin explained little deviance (≤ 7%; Table 3.5), but 

density predictions differed from the observed density by < 1% for all models except 

the remotely sensed GLM (10% lower than the observed; Table 3.7).   As noted 

previously, encounters with short-beaked common dolphin were most common in 

waters with temperatures ≥16o C, consistent with the warm-temperate/tropical 

distribution range for this species (Evans 1994).  All the encounter rate models 

showed a “threshold effect” for SST, indicating that encounters dropped 
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substantially in water temperatures below about 16o C.  This result varies from the 

linear relationship to SST that Forney (2000) found in her encounter rate GAMs built 

using a subset of these data (1991, 1993, and 1996 surveys).   This difference may be 

attributable to the additional year of survey data included in our models, as well as to 

the pseudo-jackknife cross validation procedure we used for model building and 

selection.  Interestingly, a positive linear relationship to SST was evident in all of 

our group size models for this species.  Models built with additional years of data 

will help to resolve the finer details of this relationship.   

Areas with the highest predicted densities included the Southern California 

Bight (SCB) and the offshore regions of the study area (Appendix B.b).  Inshore 

waters north of Point Sur had the lowest predicted densities.  All models predicted 

higher densities in the southern half of the study area, with decreasing densities north 

of about 37o N latitude (Appendix B.b).  Common dolphins historically occurred 

primarily south of Point Conception (Dohl et al. 1986), but the 1991-2001 survey 

data used for this analysis include sightings of this species up to the northern extent 

of the study area (42o N latitude).  Our models captured the seasonal shift in 

common dolphin distribution, with animals moving north of Point Arguello and 

further offshore during the summer months, as noted previously by Forney and 

Barlow (1998). 

 Previous studies have suggested that Delphinus spp. concentrate along areas 

of high relief within the Southern California Bight (SCB) (Hui 1979).  In our final 

encounter rate models, slope was included in the in situ GLM for short-beaked 
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common dolphin (Table 3.4b), indicating a higher encounter rate in areas of steeper 

bathymetry; however, relative to the other predictor variables included in the model, 

slope had little effect (Figure 3.2.b).  Differences between our results and those of 

Hui (1979) could be attributed to the additional variables included in our analysis 

(i.e., temperature and zone), which appear to have more of an effect on abundance of 

short-beaked common dolphins than does slope.  In addition, there were differences 

in how slope was measured in the two studies; Hui used a categorical index with five 

categories of contour interval whereas we used a continuous variable.  The greatest 

difference, however, was the extent of the study areas; our study area was broad 

whereas Hui analyzed data from a localized area in the SCB.   

Risso’s dolphin.  As noted above, the models built for Risso’s dolphin 

exhibited poor explanatory (Table 3.5) and predictive (Table 3.7) performance that 

may be attributed in part to the relatively small sample size (n = 70).  Each model for 

this species contained only one linear predictor (Table 3.4), and models were 

identical between type (GAM/GLM) and data source (remotely sensed/in situ).  

Depth affected encounters (more encounters in shallow waters) and SST affected 

group size (larger groups in colder water).  The paucity of predictor variables 

included in the models may also suggest that the environmental variables used in this 

study were not effective at capturing distribution patterns for this species.  Poor 

model performance is clearly evident in the smoothed density plots for this species.  

Those show very little correlation between predicted density patterns and actual 

survey sightings of this species, on which the models were based (Appendix B.c).   
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Other studies have found Risso’s dolphin to be associated with the 

continental slope and with regions having steep bathymetry (Dohl et al. 1978, 1983; 

Green et al. 1992; Baumgartner 1997, 2001); however, neither the slope nor zone 

variables were included in the final models for this species.  Risso’s dolphins are 

found in warm-temperate and tropical waters world-wide (Kruse et al. 1999), and 

have been seen off the entire U.S. west coast.  There may be a shift in distribution 

from California during cold water months northward to Oregon and Washington in 

late spring and summer (Green et al. 1992).  The negative relationship to SST in the 

group size models appears inconsistent with this species’ occurrence in relatively 

warmer water, but it is consistent with the data used in this analysis; during the 

1991-2001 surveys, larger groups were generally seen north of Point Conception 

where waters tend to be cooler, with smaller groups sighted more frequently in the 

SCB.  These data indicate that group size may be affected by more complex 

ecological or behavioral factors that are not captured by models built with fairly 

broad-scale environmental predictor variables. 

Pacific white-sided dolphin.  The predicted/observed ratios for Pacific white-

sided dolphin density in the total study area exhibited the greatest differences (0.431 

to 0.968), with superior performance attributed to predictions from the in situ 

encounter rate and group size GLMs (Table 3.7).  This difference in performance is 

not as obvious when comparing smoothed density plots for this species, as all four 

models appear to capture the general distribution patterns of Pacific white-sided 

dolphins in the study area (Appendix B.d).  Key variables included in the encounter 
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rate models for Pacific white-sided dolphin were SST and either depth or zone, with 

more encounters predicted for cooler waters over the continental shelf and slope, 

consistent with known distribution patterns (Barlow and Forney 2007).  The models 

built with remotely sensed data also included CV(SST) as a key variable, suggesting 

that more encounters occur in frontal regions.  All group size models included 

Beaufort sea state, and the two in situ models included two additional variables, zone 

and CV(SST).  The function of the latter variable was consistent with the remotely 

sensed encounter rate models, predicting larger groups in waters with higher SST 

variation.  The zone variable, however, produced an unexpected effect as larger 

groups were predicted for waters deeper than 2,000 m.  The variables in the in situ 

group size models (GAM and GLM) were identical, and there were similarities 

between most of the key variables and functions included in the encounter rate 

models.  Therefore, the variable responsible for the superior total study area density 

prediction was Beaufort sea state, which was included in the encounter rate model of 

the in situ GLM.  The increased predictive ability is thus not related directly to the 

type of SST data, but rather to the inclusion of a variable that accounted for the 

likelihood of detecting groups of the animals. 

Northern right whale dolphin.  For this species, the effect of CV(SST) on 

group size was consistent between the remotely sensed and in situ models, as both 

indicated greater numbers of animals in waters with higher SST variation (frontal 

regions).  Northern right whale dolphins feed primarily on mesopelagic fish and 

squid, and are known to occur frequently with other cetaceans, particularly Pacific 
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white-sided dolphins (Jefferson et al. 1994).  Interestingly, CV(SST) was also 

included in the remotely sensed encounter rate models and in situ group size models 

for Pacific white-sided dolphin, with a similar effect (more frequent encounters and 

larger groups in regions with greater SST variation).  All the encounter rate models 

for northern right whale dolphin showed a “threshold effect” for SST, indicating that 

encounters dropped substantially in water temperatures greater than about 16o C.  

This result is consistent with this species’ tendency to occur in relatively colder 

waters off California (Leatherwood et al. 1982; Jefferson et al. 2004).  Regions with 

the highest predicted densities included inshore waters north of Point Conception, 

with the greatest concentrations between Point Arena and Cape Mendocino 

(Appendix B.e).  The smoothed density plots revealed differences in model 

predictions consistent with the predicted/observed density ratios; the GAM built with 

remotely sensed data (predicted/observed = 0.819) failed to predict increased relative 

densities in some of the offshore areas and in the SCB that were captured by the in 

situ GLM (predicted/observed = 0.957).     

Dall’s porpoise.  Encounter rate models for Dall’s porpoise had the highest 

explained deviance (> 36%), and predicted densities for this species were, for all 

model types, close to the density we estimated directly from the corresponding data 

(Table 3.7).  Key predictor variables in the Dall’s porpoise encounter rate GAMs 

included SST, depth, and Beaufort sea state.  These terms were similar in functional 

form to encounter rate GAMs developed for this species by Forney (2000), 

confirming its preference for cooler, upwelling-modified water.  Regions with 
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highest predicted densities include inshore waters north of Point Sur (Appendix B.f).  

A comparison of smoothed density predictions to actual survey sightings confirm 

that all four models were effective at capturing the general distribution pattern of 

Dall’s porpoise in the study area (Appendix B.f).     

As expected, our application of f(0) and g(0) values derived for Beaufort sea 

states of 0-2 to effort conducted in sea states of 0-5 resulted in a substantial 

downward bias in our density estimates of Dall’s porpoise.  Our density estimates 

(direct or model-based) for surveys with Beaufort sea states 0-5 (0.016 animals/km2) 

were about 2 to 5 times lower than those estimated directly from the same surveys 

when only the survey coverage with Beaufort sea states of 0-2 was included (range: 

0.038 to 0.086 animals/km2;  Barlow 2003). 

Sperm whale.  With the exception of the encounter rate GAM built with 

remotely sensed data, all the final models for sperm whale included either the zone 

or depth variable.  Depth was included in the encounter rate GLM built with 

remotely sensed data and zone was included in both the encounter rate GAM and 

GLM built with in situ data (Tables 3.4a and 3.4b; Appendix A).  The functional 

form of the depth variable in the GLM built with satellite data shows encounters 

increasing with increasing depth up to about 3,500 m, and then declining slightly.  In 

the in situ models, highest encounters are shown in waters deeper than 2,000 m (i.e., 

in zone 3).  This species’ apparent preference for deep waters is consistent with past 

observations (Leatherwood et al. 1982).  This distribution pattern also is consistent 

with survey data collected monthly in the study area north of Point Conception 
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during 1980-83: the majority of the 67 sperm whale sightings were in slope waters or 

deeper (Dohl et al. 1983).  In the group size models, zone was the only variable in 

the GAM and GLM built with remotely sensed data and depth appeared in the GAM 

and GLM built with in situ data (Tables 3.4a and 3.4b; Appendix A).  All the group 

size models suggest that larger groups occur in deeper waters; however, this could be 

an artifact of the small number of sightings (n = 2) in waters less than 2,000 m deep.  

Sperm whales occur in highly variable group sizes of one (often a solitary male) up 

to 50 or more (Leatherwood et al. 1982).  Sample size permitting, future analyses 

should examine whether solitary individuals occupy different habitats than the larger 

groups of animals.   

The encounter rate GLM built with remotely sensed data and the group size 

GLM built with in situ data show negative linear relationships with SST and 

CV(SST).  These results suggest more encounters and larger groups in cooler waters 

with little temperature variability.  Sperm whales are widely distributed in the 

eastern North Pacific but they are most abundant in waters with temperatures greater 

than 15o C (Rice 1989).  They are found year-round off California (Dohl et al. 1983; 

Barlow 1995; Forney et al. 1995) and are found off Oregon and Washington during 

the warmer seasons (Green et al. 1992).  Our model results suggest that during the 

summer/fall months when the survey data were collected, sperm whales tended to 

occur in relatively cooler waters of the study area, and did not congregate near 

frontal regions.  The smoothed density plots for this species show a lack of 

correlation between predicted density patterns and actual survey sightings of this 
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species (Appendix B.g).  The failure of the models to capture the spatial distribution 

pattern for this species may be attributed in part to the small sample size available 

for model development (n = 37).     

Fin whale.  As compared to other species of baleen whales, fin whales are 

versatile feeders that are known to consume krill, herring, pollock, capelin, 

lanternfish, and occasionally squid (Leatherwood et al. 1982).  This diversity in prey 

preference makes it difficult to interpret which group size model is more consistent 

with known distribution patterns.  The group size models built with remotely sensed 

CV(SST) data suggest that fin whales congregate in frontal regions, while the in situ 

models suggest otherwise.  Aggregations of fin whale have been observed year-

round in central/southern California, with an increase in numbers in summer and fall 

(Forney and Barlow 1998).  The variables and functional forms included in the 

encounter rate models for this species were very similar for both model types and 

both data sources.  The key variables were zone, with most encounters over the 

continental slope, and SST, with most encounters in moderate-temperature waters 

(14-19o C, maximal at about 16-17o C).  Although the encounter rate models were 

similar, results from both the ASPE (Table 3.5) and density (Table 3.7) comparisons 

suggest that the models using remotely sensed data are more accurate, implying that 

fin whales congregate in waters with high SST variation.  This result is consistent 

with that of Doniol-Valcroze et al. (2007), who found high correlations between the 

distribution of fin whales and thermal fronts in the Gulf of St. Lawrence.  This 
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suggests that our remotely sensed CV(SST) measures were more effective at 

characterizing frontal regions than our in situ CV(SST) measures. 

The increased predictive ability of the models built with remotely sensed data 

is evident in the smoothed density plots for this species (Appendix B.h).  Based on 

the sighting data, all four models accurately predicted regions with the highest 

densities; however, the GAM built with remotely sensed data predicted relatively 

higher densities for many of the smaller areas offshore and north of Point 

Conception where sightings were made during the 1991-2002 surveys (Appendix 

B.h).  This difference is most notable in comparisons of the remotely sensed GAM 

and in situ GLM. 

Blue whale.  For this species, zone was a key variable included in the final 

encounter rate models built using in situ SST data; highest encounter rates were on 

the shelf and slope, with encounter rate dropping significantly in waters deeper than 

2,000 m (Table 3.4b; Appendix A).  Similarly, for the encounter rate models built 

with remotely sensed data, depth was included in the final GAM and GLM as a 

linear term that showed decreasing encounters with increasing water depth (Table 

3.4a; Appendix A).  Both models are consistent with what is known about this 

species, as blue whales feed off California in shelf and slope waters during summer 

and fall (roughly June through November; Calambokidis et al. 2003).  The two 

encounter rate GAMs differed only in their inclusion of the depth variable; the in situ 

model included the categorical zone variable whereas the remotely sensed model 

included the continuous depth variable.  Explained deviance and ASPE values for 
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the remotely sensed and in situ models were very similar (Table 3.5), while density 

estimates for the remotely sensed models were closer to the observed density 

estimate (Table 3.7).  These results suggest that the zone and depth variables were 

equally effective as predictors, at least for these models. 

Despite the overall good model performance indicated by the 

predicted/observed density estimates (0.999-1.041), smoothed density plots suggest 

that the models were not able to capture the spatial distribution patterns of blue 

whales in the study area (Appendix B.i).  As noted previously, the density 

predictions derived for the entire study area do not provide information on how well 

the models captured spatial patterns.  Areas with the highest predicted densities of 

blue whales were the shelf and slope regions along the entire coast (Appendix B.i).  

The failure of the models to predict areas of higher density further offshore where 

animals were sighted during the 1991-2001 surveys indicates that the environmental 

variables considered in this study did not account for the complete pattern of 

distribution for this species.   

Humpback whale.  Explained deviance was relatively high (> 34%) for the 

humpback whale encounter rate models (Table 3.5), and predicted density estimates 

for this species were close to the observed for all model types (Table 3.7).  Predictor 

variables with the largest effect on humpback encounter rates included SST and 

depth.  Sighting rates decreased in waters warmer than about 17o C and were higher 

in shallow than deep waters.  CV(SST) was the only predictor variable in the 

remotely sensed group size models, with larger groups in areas with higher SST 



 

 146

variation.  CV(SST) spatial resolution was approximately 493 km2, suggesting that 

this species may congregate at regional upwelling regions.  Humpbacks are known to 

forage cooperatively, consistent with larger foraging groups in frontal areas with 

prey aggregations (Day 2006).  Zone was the only predictor variable included in the 

in situ group size models, showing higher average group sizes in waters over the 

continental slope.  These variables are consistent with the known distribution 

patterns of humpback whales off California, where they congregate to feed during 

spring, summer, and fall (Calambokidis et al. 2001).  Regions with the highest 

predicted densities were inshore areas off central and, to a lesser extent, northern 

California, consistent with humpback whale sighting locations during the 1991-2001 

shipboard surveys (Appendix B.j).    

  

Caveats 

Several sources of potential bias were associated with this analysis.  

Encounter rate GAMs and GLMs were built using segment length as an offset to 

standardize the expected encounter rate; however, we found that this theoretical 

offset relationship was not valid because short segments (< 2.5 km) tend to occur in 

high density areas, particularly for those species that require off-effort group size 

estimates.  Options considered to address this potential bias were determined to 

introduce greater bias, e.g., excluding the short samples would eliminate much of the 

encounter rate signal.  The potential effect of this bias is unclear but is presumed to 



 

 147

be small given that less than 4% of the total segments were less than 2.5 km long.  

However, this issue should be addressed in future research.  

The small sample sizes used to develop many of the species models 

adversely affected their predictive ability.  Unfortunately, species with small 

numbers of sightings are those for which predictive models are most needed, and 

conservation management decisions may need to be made on the basis of predictions 

from models built with few data.  In this study, the models built with small numbers 

of sightings produced variable results across model type (GAM/GLM) and data 

source (remotely sensed/in situ) as compared to models with larger sample sizes.  

The latter generally exhibited good predictive performance and showed consistent 

results between models.  For those cases where models are developed using limited 

sample sizes, we advocate a multiple model approach in order to compare 

predictions across model types.  Inconsistent results suggest that data are too few to 

build robust models or to support reasonable predictions. 

Density calculations incorporated published f(0) values that were developed 

for truncated data (i.e., to estimate a detection function for each species group, the 

most distant 15% of the sightings were eliminated prior to analysis; Barlow 2003).  

Some of the sightings used in our models may have been beyond the truncation 

distance used for estimating f(0), thus incorporating bias into the density estimates.  

Because one of our objectives was to compare the different models’ predictive 

ability (vs. compare our density estimates to those derived using standard line-

transect methods), deleting the most distant sightings prior to modeling was 
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considered inappropriate for this study because this would have further reduced the 

limited sample sizes and eliminated part of the signal.  We could have truncated the 

sighting data prior to calculating observed densities, as perpendicular distance 

information for the sightings is available from the survey data.  However, 

perpendicular sighting distances are not available for the values predicted from our 

models, and thus our comparison of predicted density to density estimates derived 

from the observations would be based on different data sets.  Ideally, f(0) and g(0) 

values should be derived from the data used for modeling; however, these analyses 

are beyond the scope of this project and should be the focus of future work.  

This analysis was based on ship survey data collected from late July though 

early December, with no allowance for seasonal effects within the summer/fall 

period or between winter/spring.  Abundance and distribution patterns of the species 

considered could be markedly different if within- or between-season analyses were 

conducted.  Our study benefits by having four years of data collected over a fairly 

wide and consistent area.  However, given the high level of interannual 

environmental variability in the study area, the data very likely do not capture the 

full range of variation among (or within) years.  Additional years of survey data, 

ideally collected year round, would help to better describe and understand cetacean 

distribution patterns in the study area.   

Latitude and longitude were intentionally excluded from the list of potential 

predictor variables since we wanted to evaluate how well the models could predict 

patterns of cetacean distribution in a highly dynamic region.  Based on the maps of 
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predicted species densities (Appendix B), it appears that latitude and longitude 

terms, as well as potential interaction terms (e.g., latitude x water depth), could 

account for additional variance not captured by the variables used in this analysis.  

Latitude and longitude interaction terms have been used effectively in predictive 

models (Forney 2000).  However, the inclusion of latitude and longitude terms in 

habitat models diminishes their use for prediction in dynamic environments.   

Ideally, model performance would be evaluated based on a fully-independent 

set of survey data.  Since we had a limited number of survey years available for 

model development, we included measures of prediction in our model selection 

process; one year was treated as “novel” in each of the pseudo-jackknife iterations.  

We advocate an iterative process whereby future datasets are first used to validate 

existing models, and then included as part of the full dataset for additional model 

refinement. 

 

Conclusions 

The main goals of this study were to 1) examine the most effective 

resolutions of satellite-derived SST for cetacean-habitat models, 2) compare the 

predictive ability of GAMs/GLMs, 3) compare the performance of models built with 

remotely sensed vs. in situ data, and 4) examine whether the patterns identified by 

our models were consistent with results from past California cetacean-habitat 

studies.  We found that, for all species, the predictive power of GAMs and GLMs 

showed much greater variation among years than among SST spatial resolution.  
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This finding emphasizes the importance of interannual variability in the study area.  

For most species, predictive ability was higher at the coarser spatial resolutions 

included in our analysis.  Although results vary by species, GAMs and GLMs (both 

for encounter rate and group size) exhibit similar explanatory and predictive 

performance.  If sample size is sufficient (ideally greater than 100 sightings), GAMs 

and GLMs built with remotely sensed measures of SST and CV(SST) can perform as 

well, and in some cases better, than models built with analogous in situ measures.  It 

is likely that models built with remotely sensed data are more appropriate for some 

species than others, particularly those species that exhibit a strong association to SST 

(e.g., Dall’s porpoise).  However, additional years of data and tests on novel datasets 

are needed to resolve species-specific model performance.   

Our study suggests that satellite-derived estimates of sea surface temperature 

variance are more effective at characterizing frontal activity due to their ability to 

measure heterogeneity in two dimensions.  When sample size is limited (fewer than 

40 sightings), however, GLMs built with in situ data appear to have better predictive 

power, probably reflecting the larger data sets available when there is no cloud-cover 

limitation.  The predictive ability of cetacean-environment models was affected by 

the level of complexity of the oceanographic environment, because more data are 

required to parameterize models for species that inhabit diverse environments.  

Future research efforts that incorporate satellite-derived data into model predictions 

should consider how many data are available, particularly for those species with 

limited numbers of sightings.   Ironically, predictive models are needed most for 
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those species for which the fewest sightings exist, such as beaked whales.  Our 

limited ability to predict occurrence for these species is problematic for marine 

resource managers who must select minimal-impact locations for human activities 

that are potentially detrimental to cetaceans (e.g., Navy test and training activities).  

The main disadvantage with using satellite data collected from passive 

infrared sensors is the potential reduction in sample size available for model 

building, particularly for those species known to occur in coastal upwelling regions 

with persistent cloud cover.  This challenge can be partially overcome by averaging 

SST data over larger spatial resolutions, which for many species have greater 

predictive ability than similar data averaged over smaller spatial scales.  Based on 

the results of this study, future research should investigate the predictive power of 

SST averaged over spatial resolutions greater than the maximum considered here (a 

six-pixel by six-pixel box using 5.55-km pixels, or 1,109 km2).  The use of temporal 

SST composites greater than eight days also could be considered to avoid data loss.  

SST data obtained from microwave radiometers could help prevent data loss due to 

cloud cover and should be evaluated in future studies.  Satellite data may never 

provide precise measures of water-column properties or prey indices currently 

available from in situ data; however, their repetitive and two-dimensional coverage 

of broad ocean areas on a near real-time basis can enable timely predictions to 

support resource management decisions.  Since satellite data represent a grid of 

quantitative information, they can be used for a variety of statistical tests.  Future 

work should focus on developing satellite-derived products that improve the 
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predictive performance of cetacean-habitat models, such as water mass proxies.  

Such variables may lead to advances in predictive modeling and provide further 

insight into the ecological relationships between cetaceans and their environment. 
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Table 3.1.  Summary of satellite-derived sea surface temperature (SST) and 
CV(SST) spatial resolutions with the greatest predictive ability for encounter rate 
and group size GAMs and GLMs.  Numbers refer to the number of pixels included 
in the resolution cell.  The spatial resolutions tested included 1, 4, 9, 16, 25, and 36 
pixel boxes, corresponding to 5.55-33.3 km boxes (i.e., 30.8 – 1,108.9 km2).    

 
 Encounter Rate Group Size 
Species SST CV(SST) SST CV(SST) 
Striped dolphin 36 25 36 9 
     
Short-beaked common dolphin 36 36 36 25 
     
Risso’s dolphin 9 16 36 16 
     
Pacific white-sided dolphin 36 9 36 9 
     
Northern right whale dolphin 36 9 36 36 
     
Dall’s porpoise 25 36 36 36 
     
Sperm whale 36 36 36 36 
     
Fin whale 36 9 36 9 
     
Blue whale 36 36 36 36 
     
Humpback whale 36 4 36 16 
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Table 3.2.  Number of sightings from the Southwest Fisheries Science Center’s 
1991, 1993, 1996, and 2001 surveys of California waters (survey) and number with 
known values of two potential predictors.  The potential predictors are in situ and 
remotely sensed SST data (in situ and RS).  Numbers reflect data available at the 
finest spatial resolution used in the encounter rate and group size models for each 
species (see Table 3.1).  Also shown is the number of sightings for which both in situ 
and remotely sensed SST data were available (shared).  The numbers reflect 
sightings in Beaufort sea states 0-5 that were used in this analysis. 
 

Total number of sightings  
Species survey in situ RS shared 

Striped dolphin 61 60 47 47 
     
Short-beaked common dolphin 397 394 319 316 
     
Risso’s dolphin 80 79 71 70 
     
Pacific white-sided dolphin 41 41 25 25 
     
Northern right whale dolphin 52 52 40 40 
     
Dall’s porpoise 268 194 179 179 
     
Sperm whale 49 49 37 37 
     
Fin whale 142 134 120 120 
     
Blue whale 197 192 161 161 
     
Humpback whale 95 95 78 78 

    
Total 1382 1290 1077 1073 
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Table 3.3.  Remotely sensed and in situ SST and CV(SST) correlations (R2 values) 
at each of the spatial resolutions considered in this study.  Spatial resolution 
indicated is for the satellite data; in situ values were averaged from along-track data 
within linear distances that matched the spatial resolution of the satellite data.  
CV(SST) is not applicable to the 5.55 km resolution because it includes only one 
pixel. 
 

Spatial 
resolution 

 Number  
of pixels 

SST 
(R2) 

CV(SST) 
(R2) 

30.80 km2 1 0.81 NA 
    

123.21 km2 4 0.82 0.02 
    

277.22 km2 9 0.82 0.06 
    

492.84 km2 16 0.83 0.10 
    

770.06 km2 25 0.83 0.14 
    

1,109.89 km2 36 0.83 0.18 
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Table 3.4a.  Comparison of the variables included in the final (1) encounter rate and 
(2) group size GAMs and GLMs built with remotely sensed SST and CV(SST).  
Linear fits are represented by “L1”.  Smoothing splines (GAMs) are represented by 
"S#" and polynomial (GLMs) are represented by “P#”, where # is the associated 
degrees of freedom.  Note that zone is a categorical variable.  For those species 
where the GAM and GLM included different predictor variables and/or degrees of 
freedom, the variable codes are shown in bold.  
 

(1) Encounter Rate Models 
 Predictor Variables 
Species  Zone Depth Slope SST CV(SST) Beaufort  
Striped dolphin GAM  S2  S2 L1 L1 
 GLM  P2  P2 L1 L1 
        
Common dolphin GAM L1   S3  L1 
 GLM L1   P3  L1 
        
Risso's dolphin GAM  L1      
 GLM  L1      
        
Pacific white-sided GAM L1 S3   S3 S3   
dolphin GLM L1 P2 L1 P3 L1   
        
Northern right GAM L1   S3  S3 
whale dolphin GLM L1   P3  P3 
        
Dall's porpoise GAM L1 S3 S3 S3 S2 S3 
 GLM   P2 P3 P2   L1 
        
Sperm whale GAM     L1 S3  
 GLM  P2  L1 L1 L1 
        
Fin whale GAM L1   S3 S2 L1 
 GLM L1   P2     
        
Blue whale GAM  L1    S3 
 GLM  L1      
        
Humpback whale GAM L1 L1  S3    
 GLM L1   P3    
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Table 3.4a (continued). 

(2) Group Size Models 
 Predictor Variables 
Species  Zone Depth Slope SST CV(SST) Beaufort  
Striped dolphin GAM    L1 S2   
 GLM    L1 P2   
        
Common dolphin GAM    L1  L1 
 GLM    L1  L1 
        
Risso's dolphin GAM    L1    
 GLM    L1    
        
Pacific white-sided GAM      L1 
dolphin GLM      L1 
        
Northern right GAM    L1 L1   
whale dolphin GLM    L1 L1 P2 
        
Dall's porpoise GAM   L1   L1 
 GLM   L1   L1 
        
Sperm whale GAM L1       
 GLM L1       
        
Fin whale GAM     S2   
 GLM     P2   
        
Blue whale GAM L1  L1     
 GLM L1  L1     
        
Humpback whale GAM     L1   
 GLM         L1   
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Table 3.4b.  Comparison of the variables included in the final (1) encounter rate and 
(2) group size GAMs and GLMs built with in situ SST and CV(SST).  Linear fits are 
represented by “L1”.  Smoothing splines (GAMs) are represented by "S#" and 
polynomial (GLMs) are represented by “P#”, where # is the associated degrees of 
freedom.  Note that zone is a categorical variable.  For those species where the GAM 
and GLM included different predictor variables and/or degrees of freedom, the 
variable codes are shown in bold.  
 

(1) Encounter Rate Models 
 Predictor Variables 
Species  Zone Depth Slope SST CV(SST) Beaufort  
Striped dolphin GAM  L1  L1  L1 
 GLM  L1  L1  L1 
        
Common dolphin GAM L1 S2  S3  L1 
 GLM L1  S2 P3  L1 
        
Risso's dolphin GAM  L1      
 GLM  L1      
        
Pacific white-sided GAM L1    S2    
dolphin GLM  P2  L1  P3  
        
Northern right GAM L1   S3 L1 S3 
whale dolphin GLM L1   P3 L1 P3 
        
Dall's porpoise GAM L1 S3 S3 S3 S3 S3 
 GLM   P2  P3  P2 P3 
        
Sperm whale GAM L1      S3 
 GLM L1     L1 
        
Fin whale GAM L1   S3 L1 L1 
 GLM L1   P2     
        
Blue whale GAM L1     S3 
 GLM L1     P2  
        
Humpback whale GAM L1 L1  S3 S3 L1  
 GLM L1  L1  P2 P2 L1  
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Table 3.4b (continued). 

 (2) Group Size Models 
 Predictor Variables 
Species  Zone Depth Slope SST CV(SST) Beaufort  
Striped dolphin GAM    L1    
 GLM    L1    
        
Common dolphin GAM    L1   
 GLM    L1   
        
Risso's dolphin GAM    L1    
 GLM    L1    
        
Pacific white-sided GAM L1    L1 L1 
dolphin GLM L1    L1 L1 
        
Northern right GAM     S3   
whale dolphin GLM    P2   
        
Dall's porpoise GAM  S2   L1 L1 
 GLM  P2   L1 L1 
        
Sperm whale GAM  L1  S3    
 GLM  L1  L1 L1   
        
Fin whale GAM L1    S2   
 GLM L1    P2   
        
Blue whale GAM   S3 S3    
 GLM    P3    
        
Humpback whale GAM L1       
 GLM L1          
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Table 3.5. Proportion of deviance explained (Expl. Dev.) and average squared prediction 
error (ASPE) for the (1) encounter rate (ER) and (2) group size (GS) GAMs and GLMs.  
Predictions are based on application of models to the data from which they were built, and 
thus provide an indication of explanatory power, i.e., model goodness-of-fit.  The ER and 
GS model with the greatest explanatory power (as determined by lowest ASPE) for each 
species appears in bold.  The number of samples and number of sightings reflects the 
numbers used to build the encounter rate models and depends on the remotely-sensed (RS) 
and in situ SST data available for the species-specific spatial resolution.  The large range of 
ASPE values for the group size models in part reflects the range of species-specific group 
sizes (e.g., short-beaked common dolphins tend to occur in highly variable groups of up to 
thousands of animals while blue whales are usually found singly or in small groups).  
 

(1) Encounter rate models 
ER GAM ER GLM 

Species 
  

Number 
of 

Samples 

Number 
of  

Sightings 
Data 

  
Expl. 
Dev. ASPE 

Expl. 
Dev. ASPE 

RS 0.095 0.038 0.100 0.028 Striped dolphin 
 

5500 
  

47 
  in situ 0.057 0.032 0.057 0.032 

              
RS 0.046 0.185 0.048 0.187 Short-beaked  

common dolphin 
6054 

  
316 

  in situ 0.049 0.183 0.048 0.183 
              

RS 0.053 0.056 0.053 0.056 Risso's dolphin 
 

6054 
  

70 
  in situ 0.053 0.056 0.053 0.056 

              
RS 0.319 0.118 0.279 0.102 Pacific white-  

sided dolphin 
5500 

  
25 
  in situ 0.227 0.060 0.269 0.109 

              
RS 0.181 0.070 0.181 0.060 Northern right 

whale dolphin 
6030 

  
40 
  in situ 0.177 0.084 0.180 0.075 

              
RS 0.391 0.104 0.362 0.113 

Dall's porpoise 
  

5928 
  

179 
  

in 
situ 0.375 0.198 0.349 0.177 

              
RS 0.044 0.079 0.053 0.070 Sperm whale 

  
6054 

  
37 
  in situ 0.031 0.069 0.023 0.069 

              
RS 0.143 0.087 0.101 0.054 Fin whale 

  
5500 

  
120 

  in situ 0.131 0.093 0.095 0.064 
              

RS 0.111 0.131 0.098 0.140 Blue whale 
  

6054 
  

161 
  in situ 0.114 0.136 0.110 0.140 

              
RS 0.340 0.093 0.319 0.108 Humpback whale  

 
5731 

  
78 
  in situ 0.341 0.094 0.335 0.094 
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Table 3.5 (continued). 
 
(2) Group size models 

ER GAM ER GLM 
Species 
  

Number 
of 

Samples 

Number 
of  

Sightings 
Data 

  
Expl. 
Dev. ASPE 

Expl. 
Dev. ASPE 

RS 0.211 3,700 0.226 3,600 Striped dolphin 
 

5500 
  

47 
  in situ 0.099 3,800 0.099 3,800 

                
RS 0.070 52,200 0.070 52,200 Short-beaked  

common dolphin 
6054 

  
316 

  in situ 0.051 52,400 0.051 52,400 
               

RS 0.071 531 0.071 531 Risso's dolphin 
 

6054 
  

70 
  in situ 0.050 584 0.050 584 

                
RS 0.298 18,100 0.298 18,100 Pacific white-  

sided dolphin 
5500 

  
25 
  in situ 0.429 17,400 0.429 17,400 

                
RS 0.152 622 0.270 654 Northern right 

whale dolphin 
6030 

  
40 
  in situ 0.149 601 0.118 677 

                
RS 0.031 9.32 0.031 9.32 

Dall's porpoise 
  

5928 
  

179 
  

in 
situ 0.058 8.88 0.058 8.81 

                
RS 0.108 59.6 0.108 59.6 Sperm whale 

  
6054 

  
37 
  in situ 0.277 52.9 0.250 53.2 

                
RS 0.058 2.14 0.056 2.13 Fin whale 

  
5500 

  
120 

  in situ 0.041 2.17 0.040 2.18 
                

RS 0.079 0.747 0.079 0.747 Blue whale 
  

6054 
  

161 
  in situ 0.113 0.690 0.081 0.678 

                
RS 0.009 2.92 0.009 2.92 Humpback whale  

 
5731 

  
78 
  in situ 0.039 2.83 0.039 2.83 
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Table 3.6.  Summary of the weighted effective strip width (ESW = 1/ f(0)) and g(0) 
estimates used to calculate observed and predicted densities for this analysis.  The original 
values are those estimated from all the survey data (Barlow 2003), which included both 
perception and availability bias to the extent possible.  These values are weighted by the 
number of small and large groups observed during the 1991, 1993, 1996, and 2001 surveys 
for the segments included in each species-specific spatial resolution.    
 

ESW g(0)  
Species 

 
Group

size 
 

original
 

weighted
 

original 
 

weighted
Striped dolphin 1-20 0.50 0.77 
 21-100 1.24 1.00 
 100+ 1.84 

 
0.913 

1.00 

 
0.883 

Short-beaked common dolphin 1-20 0.50 0.77 
 21-100 1.24 1.00 
 100+ 1.84 

 
1.317 

1.00 

 
0.950 

Risso’s dolphin 1-20 1.37 0.74 
 20+ 2.18 

 
1.615 1.00 

 
0.819 

Pacific white-sided dolphin 1-20 0.50 0.77 
 21-100 1.24 1.00 
 100+ 1.84 

 
0.844 

1.00 

 
0.862 

Northern right whale dolphin 1-20 0.50 0.77 
 21-100 1.24 1.00 
 100+ 1.84 

 
0.781 

1.00 

 
0.853 

Dall’s porpoise1 all 0.82 0.82 0.79 0.79 
Sperm whale all 4.61 4.61 0.87 0.87 
Fin whale all 1.72 1.72 0.90 0.90 
Blue whale all 1.72 1.72 0.90 0.90 
Humpback whale all 2.89 2.89 0.90 0.90 

1The original estimates were applied to effort in Beaufort sea states 0-2; for this analysis 
they were applied to effort in Beaufort sea states 0-5 (density estimates are biased 
downward). 
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Table 3.7.  Observed density (calculated by standard line-transect methods) and 
predicted density (animals per km2) based on model results.  Predicted densities are 
based on application of the encounter rate and group size models to all segments of 
the datasets. The ratio of predicted/observed density appears below the predicted 
density estimates.  The model with the ratio closest to 1/1 appears in bold. 
 

Species Number of Observed Remotely-Sensed in situ 
  Sightings density GAM GLM GAM GLM 
Striped 47 0.0499 0.0499 0.0496 0.0483 0.0483
dolphin   pred/obs 0.999 0.993 0.968 0.968
          
Short-beaked  316 0.6726 0.6713 0.6052 0.6733 0.6737
common dolphin   pred/obs 0.998 0.900 1.001 1.002
          
Risso's 70 0.0172 0.0231 0.0231 0.0219 0.0219
dolphin   pred/obs 1.345 1.345 1.274 1.274
          
Pacific white-  25 0.0350 0.0233 0.0236 0.0151 0.0339
sided dolphin   pred/obs 0.665 0.674 0.431 0.968
          
Northern right 40 0.0247 0.0202 0.0205 0.0259 0.0236
whale dolphin   pred/obs 0.819 0.830 1.048 0.957
          
Dall's porpoise 179 0.0162 0.0163 0.0163 0.0163 0.0162
    pred/obs1 1.003 1.005 1.003 0.995
          
Sperm whale 37 0.0012 0.0010 0.0011 0.0011 0.0011
    pred/obs 0.793 0.875 0.873 0.900
          
Fin whale 120 0.0028 0.0028 0.0028 0.0029 0.0029
    pred/obs 1.020 1.022 1.029 1.029
          
Blue whale 161 0.0030 0.0031 0.0030 0.0031 0.0031
    pred/obs 1.017 0.999 1.041 1.037
          
Humpback whale 78 0.0018 0.0017 0.0018 0.0018 0.0018
   pred/obs 0.978 0.998 0.999 1.002
1GAM density estimates different at 5 significant digits. 
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Figure 3.1.  Completed transects in Beaufort sea states 0-5 for the shipboard line-transect 
surveys conducted late July through early December 1991, 1993, 1996, and 2001 off 
California.  One degree of latitude = 111 km. 
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Figure 3.2.  Generalized additive (a) and generalized linear (b) model functions for short-beaked 
common dolphin encounter rates built with in situ SST and CV(SST) data.  Models were constructed 
with both linear terms and smoothing splines (s) or polynomials (poly) having up to three degrees of 
freedom.  The y-axes represent the smoothing spline or polynomial function.  Degrees of freedom for 
nonlinear fits are noted in the parentheses on the y-axis.  Zero on the y-axes corresponds to no effect 
of the predictor variable on the estimated response variable (encounter rate).  Functions have been 
scaled relative to the variable having the largest y-axis range that was not influenced by outliers.  Data 
points for each variable are indicated by the tick marks above the x axis.  The dashed lines reflect 2x 
standard error bands (i.e., 95% confidence interval).  Zone was modeled as a categorical variable 
defined roughly by water depth: 1 = shelf, 2 = slope, and 3 = abyssal plain (see text for more details).   
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CHAPTER FOUR 

 

PREDICTING SEASONAL DENSITIES OF CALIFORNIA CETACEANS 

BASED ON MODELS BUILT WITH REMOTELY SENSED 

ENVIRONMENTAL VARIABLES 

 

by 

 

E.A. Becker, K.A. Forney, M.C. Ferguson, D.G. Foley, R.C. Smith, and J. Barlow 

 

Abstract 

Seasonal variability in species distribution is a major source of uncertainty in 

cetacean conservation and management, and predictive models that incorporate 

oceanographic variability can improve our ability to identify seasonal patterns of 

cetacean occurrence.  Generalized linear and generalized additive models were 

constructed to predict encounter rates and group sizes for five cetacean species in an 

approximate 818,000 km2 area off California.  Cetacean sighting data were collected 

by the Southwest Fisheries Science Center during four systematic ship-based line-

transect surveys during the summer and fall of 1991, 1993, 1996, and 2001.  

Predictor variables included a combination of temporally dynamic remotely sensed 

environmental variables (sea surface temperature and its variance) and 
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geographically fixed variables (water depth, bathymetric slope, and a categorical 

variable representing oceanic zone).  Models with the highest predictive ability were 

selected based on a pseudo-jackknife cross validation procedure for the summer and 

fall shipboard data.  These models were then used to predict cetacean densities for 

aerial surveys conducted in winter and spring within the California study area.  

Predictive ability was measured in terms of the models' prediction error within and 

between seasons, using a nonparametric Spearman rank correlation test, as well as 

visual inspection of predicted and observed distributions by species.  When 

predicting across seasons, geographic patterns of species density were captured 

effectively for three of the five species considered.  Results indicate that interannual 

variability in the environmental parameters can explain some of the variation in the 

seasonal distribution patterns of cetaceans. 

 

Introduction 

The need for effective predictive models of cetacean occurrence and 

distribution has become more critical for marine resource managers who must select 

minimal-impact locations or seasons for an increasing number of human activities 

with potential to harm cetaceans (e.g., seismic surveys, Navy test and training 

activities, fisheries interactions, etc.).  Temporal and spatial variability in species 

distribution and abundance remains a major source of uncertainty in managing 

marine resources (Ralls and Taylor 2000), particularly in regions such as the 

California Current where significant seasonal variation in cetacean species 
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distribution has been documented (Forney and Barlow 1998).  To improve the 

predictive ability of cetacean-habitat models, it is necessary to understand more 

about how cetaceans respond to variability in environmental conditions on seasonal 

and interannual time scales.  Off the California coast, the abundance of cetaceans has 

been estimated from shipboard line-transect surveys conducted by the Southwest 

Fisheries Science Center (SWFSC) during the summer and fall (henceforth referred 

to as 'summer' for simplicity) from 1991 to 2001, covering a total of approximately 

33,000 km (Barlow 2003).  Ideally, ship surveys also would be conducted during the 

winter and spring to provide similar cetacean sighting and corresponding 

environmental data for these seasons.  Unfortunately, rough weather conditions 

make it difficult to collect shipboard line-transect data in winter and spring 

(‘winter’), and many of the data that exist for these seasons have been collected 

during aerial surveys, which do not allow for the collection of complementary in situ 

oceanographic data.  Aircraft-based remote sensing can supply analogous data, but in 

practice this is rarely done during aerial surveys of cetaceans.  In addition, recent 

aerial survey data contain too few sightings to build and evaluate predictive 

environmental models.   

Although the physical processes responsible for variation in local 

oceanographic conditions differ on seasonal, interannual, and inter-decadal time-

scales, effects on sea surface temperature and other variables are similar (Chavez et 

al. 2003).  If interannual variability in oceanographic conditions during summer is of 

a similar order of magnitude as seasonal variation, then it might be possible to 
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predict winter population densities for cetacean species that are not highly migratory 

based on multi-year summer models and remotely sensed oceanographic data for the 

winter period.  Predictive cetacean models primarily have been developed using 

habitat data that were collected in situ, but Becker et al. (2007, Chapter 3) found that 

satellite-derived measures of SST and its variance can be effective predictors of 

cetacean density, thus offering a means of predicting cetacean density and 

distribution when only remotely sensed environmental data are available.   

In many regions with strong seasonal differences (e.g., the Beaufort Sea), it 

would not be appropriate to build models with summer data and attempt to make 

winter predictions.  However, in waters off California, pronounced seasonal patterns 

in the distribution and abundance of marine mammals have also been documented 

(Forney and Barlow 1998).  It is possible that interannual variability in 

environmental conditions and cetacean distributions (e.g., caused by El Niño 

Southern Oscillation [ENSO] events) may be similar to seasonal variability (Forney 

and Barlow 1998).  Coastal waters off California thus provide an appropriate study 

area to test the seasonal predictive power of species-environment models (i.e., 

building models that incorporate interannual variability in an attempt to predict 

seasonal distribution patterns).  We developed both generalized additive models 

(GAMs) and generalized linear models (GLMs) to relate cetacean sighting data from 

shipboard surveys in the California Current region during the summer and fall from 

1991-2001 to remotely sensed environmental data.  The modeling framework 

follows that developed for a different geographic area by Ferguson et al. (2006), who 
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used GAMs to model cetacean density as a function of environmental variables.  The 

resulting models are then used to predict cetacean distribution patterns based on 

remotely sensed environmental data for winter and spring 1991-92, a period when 

aerial surveys were conducted within the California study area.   

Models were built for five species that are known to be present year-round 

and had sufficient sightings during the winter aerial surveys to evaluate the 

environmental models:  short-beaked common dolphin (Delphinus delphis), Risso’s 

dolphin (Grampus griseus), Pacific white-sided dolphin (Lagenorhynchus 

obliquidens), northern right whale dolphin (Lissodelphis borealis), and Dall’s 

porpoise (Phocoenoides dalli).  Highly migratory species such as blue whales 

(Balaenoptera musculus) and humpback whales (Megaptera novaeangliae) were not 

expected to have sufficient numbers of sightings because they are largely absent 

from the study area in the winter (blue whales occur from June-November and 

humpback whales from April-November).  Gray whales (Eschrichtius robustus) 

were also excluded from the analysis since they are largely absent from the study 

area in the summer.  The aerial survey data were used as test data to evaluate 

whether models constructed for summer using the extensive shipboard sighting data 

could predict broad distribution and density patterns during the winter period.  This 

approach provided the advantages of a robust dataset for model construction (the 

shipboard data) and a test dataset during a different season for evaluation (the aerial 

survey data).  The purposes of this study are to 1) assess whether species-

environment models developed using shipboard survey data collected during 
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summer improve our ability to predict cetacean density for winter as compared to a 

“null” model (i.e., density estimates derived from summer shipboard surveys without 

consideration of environmental data); and 2) compare the ability of GAMs and 

GLMs to predict species densities across seasons.  Results are examined in light of 

known cetacean distribution patterns documented from previous California cetacean-

habitat studies.   

 

Methods 
 
Field methods 

SWFSC California shipboard surveys 

Cetacean sighting data used to construct the predictive models were collected 

off California by SWFSC during the summer and fall (late July through early 

December) of 1991, 1993, 1996, and 2001 using systematic ship-based line-transect 

methods (Buckland et al. 2001).  Detailed descriptions of these research cruises and 

survey methods are available elsewhere (Hill and Barlow 1992; Mangels and 

Gerrodette 1994; Barlow 1995; Von Saunder and Barlow 1999; Appler et al. 2004).  

The amount of survey effort varied among years, but transect coverage was roughly 

uniform throughout the study area (Figure 4.1), and cetacean data collection 

procedures were consistent across all surveys (Kinzey et al. 2000; Barlow and 

Forney 2007).   In summary, two teams of three observers rotated at two-hour 

intervals among starboard observer, port observer, and data recorder positions that 

were located on the flying bridge of the ship.  The starboard and port observers 
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searched for animals using pedestal-mounted 25x150 binoculars (“big eyes”) while 

the data recorder searched using unaided eye and 7x50 handheld binoculars.  In 

addition to sighting data, changes in Beaufort sea state conditions were entered on a 

laptop computer connected to the ship’s navigation system. When cetaceans were 

detected, the ship typically diverted from the transect line to estimate group size and 

identify the species present.  All cetaceans sighted were identified to the lowest 

taxonomic level possible.  To build the shipboard models, we used only sightings 

identified to species that were made while on systematic transect lines. 

 

SWFSC California aerial surveys 

Cetacean sighting data were collected during aerial surveys conducted by 

SWFSC off California in March-April 1991 and February-April 1992.  Detailed 

descriptions of aerial survey field methods and analytical methods have been 

published previously (Carretta and Forney 1993; Forney et al. 1995; Forney and 

Barlow 1998), and pertinent aspects are summarized here.  The transects followed 

two overlapping grids designed to survey systematically along the entire California 

coast out to 185 km (100 nmi) off central and northern California and 278 km (150 

nmi) off southern California (Figure 4.2).  However, poor weather prevented the 

completion of the second grid.  The aerial survey study area encompassed 

approximately 264,000 km2 of the nearshore portion of the shipboard study area. The 

combined transect lines were spaced approximately 41-46 km (22-25 nmi) apart, 

with an individual grid spacing of 82-92 km (44-50 nmi).  Aircraft were outfitted 
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with two bubble windows for unobstructed lateral viewing and a belly port for 

downward viewing.  The survey team consisted of three observers: two “primary” 

observers who searched through the left and right bubble windows and a 

“secondary” observer who used the belly window to search the trackline and 

reported sightings missed by the primary team.  The field of view for the belly 

observer extended 55-60 degrees on each side of the aircraft, or approximately 125-

150 m from the transect line at the target altitude of 213 m (700 ft).  The survey team 

also included a data recorder who recorded sighting information and environmental 

conditions throughout the survey using a laptop computer connected to the aircraft’s 

navigation system.  When cetaceans were sighted, the aircraft circled over the 

animals to allow observers to identify species and estimate the size of the group.  All 

cetaceans sighted were identified to the lowest taxonomic level possible.  Any 

additional sightings made after the aircraft had diverted from the trackline were not 

included in the present analysis. 

 

Analytical Methods 

We examined the predictive ability of the GLMs and GAMs using a two-step 

process in which 1) species-habitat models were constructed using the summer 

shipboard sighting data and associated environmental variables, and 2) the resulting 

models were used to predict cetacean encounter rates and group sizes for the winter 

aerial survey data (Figure 4.3).  Prior to building the models, sighting and 

environmental data for the four shipboard surveys were separated into continuous 
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segments of on-effort trackline, the majority of which were 5 km long, 

corresponding roughly to the finest resolution of satellite data used for this analysis 

(Becker et al. 2007, Chapter 3).  Environmental data included as potential predictor 

variables in the models included satellite-derived estimates of sea surface 

temperature (SST) and coefficient of variation (CV) of SST (to serve as a proxy for 

frontal regions), water depth, bathymetric slope, and oceanic zone.  The latter was 

included as a ranked categorical variable defined roughly by water depth: shelf = 

waters from the coast to 200 m deep; slope = waters between 200 m and 2,000 m 

deep; and abyssal plain = waters deeper than 2,000 m.  Beaufort sea state affects the 

probability of detecting animals (Barlow et al. 2001) and was included as a 

continuous predictor variable in our models to account for sighting conditions.  

Latitude and longitude were intentionally excluded from the models since our goal 

was to predict seasonal patterns of cetacean distribution in a highly dynamic region.  

Becker et al. (2007, Chapter 3) examined the most effective temporal and 

spatial resolutions of remotely sensed SST and CV(SST) for species-environment 

models of cetacean density and selected a resolution that maximized sample size 

while providing species-specific models with the best predictive power.  Based on 

their evaluation, we used 8-day running average SST composites (NOAA Advanced 

Very High Resolution Radiometer [AVHRR] Pathfinder v5) centered on the date of 

each survey segment, and obtained mean SST values and CV(SST) at the spatial 

resolution found to maximize predictive ability for each species (Table 4.1). 
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Model structure, development, and selection 

Detailed descriptions of the model building and selection process can be 

found in Becker et al. (2007, Chapter 3), but pertinent information is summarized 

below.  

Separate GLMs and GAMs were constructed as alternate ways to predict 

encounter rates and group sizes for each of the five cetacean species.  Thus, there 

were a total of 20 models:  2 model types (GAM/GLM) x 2 dependent variables 

(encounter rate and group size) x 5 species.  A GLM is created using a link function 

that defines the relationship between the mean of the response variable and the 

predictor variables.  For each statistical distribution (e.g., binomial, gamma, Poisson) 

there is a specific type of link function that constrains the response variable to 

realistic values.  For example, the number of cetacean sightings per survey segment 

is approximately Poisson distributed, so the log-link function is appropriate.   

In a GLM, a function (the “link”) of the mean (μ) of the response variable is 

modeled as a sum of predictor variables (x1, x2,….xn), each of which may be 

transformed to represent nonlinear effects according to specified parametric 

functions (e.g., polynomial, exponential, logarithmic), plus a constant (α): 

( )  += ∑
=

n

i
iii xlink

1
βαμ                                      (Eq. 4.1) 

 
The right side of Eq. 4.1 is termed the “linear predictor” because it is linear in 

the parameters (α,β1,...,βn ).   
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GAMs are nonparametric extensions of generalized linear models, sharing 

many of the same statistical properties without constraining the predictor variables to 

enter the model as a particular parametric form.  As with GLMs, a GAM is created 

using a link function defining the relationship between the mean of the response 

variable and the predictor variables: 

( ) ( )∑
=

+=
n

i
iii xflink

1
αμ                                    (Eq. 4.2) 

 
The term “additive” is used to describe the specific relationship among 

predictor variables (right side of Eq. 4.2): functions ( )xf , possibly nonparametric, of 

predictor variables are summed to obtain the predicted response values.   

The encounter rate and group size GLMs and GAMs were built using the 

step.gam function in S-PLUS (Professional Edition Version 6.0.2, Release 1 for 

Windows, Insightful Corp., 2001).  Encounter rate was modeled as the number of 

sightings per segment using all segments containing SST data for the species-

specific spatial resolution, and using the length of the segment as an offset.  

Encounter rate data are basically count data, which are typically Poisson-distributed 

(Zar 1999).  However, there were no sightings on the majority of the segments, so 

we used a quasi-likelihood error distribution with the variance proportional to the 

mean and a log link function (approximating an over-dispersed Poisson distribution).  

Group size models were built using the natural logarithm of group size as the 

response variable with an identity link function (i.e., a classic linear model where the 
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mean is equal to the linear predictor) and a Gaussian error distribution.  Group size 

models were built using only those segments that contained sightings.   

Following an approach developed by Ferguson et al. (2006), a stepwise 

forward/backward variable selection procedure was used in which the stepwise 

selection process occurred twice for each model in order to improve the dispersion 

parameter estimate used for the final model.   Akaike’s Information Criterion (AIC: 

Akaike 1973) initially was used by step.gam to select the best model at each step 

(see Chapter 3 for details).  Models were constructed with both linear terms and 

polynomials (GLMs) or smoothing splines (GAMs) having up to three degrees of 

freedom.  Models built with greater than three degrees of freedom add unrealistic 

complexity to the functions and tend to be difficult to interpret ecologically (Forney 

2000; Ferguson et al. 2006).   

The stepwise selection process was conducted separately for datasets that 

excluded one survey year; data from 1993 were included in all model combinations 

because 1993 was the year with the warmest mean sea surface temperatures and was 

considered essential to capture the observed interannual variability in oceanographic 

conditions.  Cross validation (testing the predictive ability of each of the (n-1)-year 

models on the excluded year) provided an average squared prediction error (ASPE) 

for each of the (n-1)-year models selected on the basis of AIC.  Each of these models 

was then re-fitted to the other combinations of (n-1) year datasets, a process we 

referred to as a “pseudo-jackknife” since it resembles the original jackknife 

computer-based method for estimating standard errors (Efron and Tibshirani 1998).  
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The models with the lowest sum of the four ASPE values produced by the pseudo-

jackknife cross validation process were selected as the best encounter rate and group 

size GLM and GAM.  ASPE calculations for the encounter rate models were based 

on Anscombe residuals to account for the quasi-likelihood error distribution 

(McCullagh and Nelder 1989).  Each model selected from the pseudo-jackknife 

cross validation process was then re-fitted to all four years of shipboard data to build 

the final models.   

Density estimates (number of animals per km2) were computed using the 

standard line-transect equation (Buckland et al. 2001):  

            
ESW

s
L
nD

⋅
⋅⋅=
2

1)(                                          (Eq. 4.3) 

 
where 

n/L  =  encounter rate (number of sightings per unit length of trackline in km) 

s   =  estimated mean group size 

ESW  =  effective strip half-width in km, or 1/f(0) where f(0) is the probability 

density function evaluated at zero perpendicular distance, i.e., on the 

trackline. 

Density estimates were calculated from the survey data using standard line-

transect methods in order to provide a comparison to the models’ predictions.  For 

the latter, predicted values for n/L and s were obtained from the output of the 

encounter rate and group size models, respectively.  To correct for the bias resulting 

from back-transforming the logarithmic values produced by the group size models, 
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we used a ratio estimator (Finney 1941; Smith 1993).  The probability of detecting 

an animal or group of animals on the transect line, g(0), was not included in our 

density estimates.  There are two separate components of g(0), perception bias and 

availability bias (Marsh and Sinclair 1989).  While correction factors for perception 

bias are available for many species, estimates of availability bias from aerial surveys 

are available for only a few species.  Availability bias is more important during 

aerial than shipboard surveys, given the shorter time while any given part of the 

ocean is in view.  We chose to exclude all g(0) values from our density estimates 

since our analysis evaluated only relative patterns of predicted and observed 

abundance.   

We relied on published values of f(0) (or ESW) for each species/group size 

as estimated from the specific survey data (Forney and Barlow 1998; Barlow 2003).  

In most cases the range of Beaufort sea state conditions used to estimate the original 

parameters matched the range included in our analysis (i.e., 0-5).  However, for 

shipboard sightings of Dall’s porpoise a published f(0) value was available only for 

Beaufort conditions of 0-2.  The application of this f(0) in our study, which included 

sea states of 0-5, resulted in a downward bias in our density estimates (Becker et al. 

2007, Chapter 3); however, this bias is not expected to affect our comparison of 

relative densities.   
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Evaluation of model predictive ability  

Differences in platform-specific biases for ship vs. aerial surveys (e.g., the 

proportion of diving animals missed) preclude a direct quantitative comparison of 

estimated densities from aerial and shipboard surveys.  Consequently, to evaluate the 

between-season predictive ability of our final shipboard models, we used a 

nonparametric Spearman rank correlation test across six geographic strata.  

Predictive ability was based on a comparison of the models’ ranked predicted values 

across six biogeographic strata to those derived from the actual survey data for each 

species’ encounter rate, group size, and density (Figure 4.3).  Results from the 

Spearman rank correlation tests were compared to results obtained when the models 

were used to predict densities from the shipboard survey data upon which they were 

built (essentially a measure of goodness of fit).  In addition, results were compared 

to a “null” model, defined as the density derived from summer shipboard surveys 

without consideration of environmental data.  However, given limited sample sizes 

and only six pairs of data available for the correlation test, statistical power is low.  

In addition to the rank correlation tests, we also plotted sightings from the aerial 

survey data on maps of predicted species densities to provide a means for 

qualitatively evaluating the models’ predictive power.  

To enable a rank analysis, we stratified the study area into six regions (Figure 

4.4).  Point Arguello was selected as the dividing line between the northern and 

southern strata because the Point Arguello/Point Conception region is a known 
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biogeographic boundary, marking the range limits of many marine species 

(Valentine 1973; Briggs 1974; Newman 1979; Doyle 1985).  The northern and 

southern regions were further stratified consistent with the criteria used to define the 

categorical zone predictor variable included in the models (less than 200 m, 200-

2,000 m, greater than 2,000 m).  Visual inspection of survey effort plots confirmed 

that effort was relatively uniform within each stratum (i.e., to reduce potential bias 

resulting from concentrated effort in a portion of a stratum).  

Published f(0) values for many species were stratified by group size, because 

this affects the probability of detection.  We used Kolmogorov-Smirnov (K-S) tests 

to assess whether there were regional differences in the proportion of sightings in 

each group size category.  Our samples consisted of the number of groups in each 

published f(0) size category in each of the six strata.  Strata that revealed no 

significant differences (α = 0.05) in average group size were combined in order to 

increase the number of sightings contributing to the weighted f(0) estimates.  Strata 

were combined and K-S tests were repeated until we had the minimum number of 

strata showing evidence of significant group size differences.  If regional differences 

were identified, weighted f(0) estimates were calculated for each stratum (or 

combined stratum) to allow for regional differences in mean group size and detection 

probabilities.  The weighted f(0) values were based on the proportion of groups 

within each group size range observed within each of the geographic stratum or 

combined geographic stratum.  Weighted f(0) values were computed separately for 

the 1991-2001 ship surveys and the 1991-1992 aerial surveys.   
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To qualitatively evaluate the models’ predictive ability, density estimates for 

each segment were smoothed on a grid resolution of approximately 12 km, and the 

resultant predictions of distribution and density were compared with actual sightings 

made during the winter aerial surveys.  Smoothing was done using inverse distance 

weighting interpolation to the second power in Surfer software (version 8).  The 

same species-specific relative density scale was used for both the GAM and GLM to 

enable a comparison between model types.  Models with obvious outliers were 

scaled so that differences in predicted densities at lower levels were visible.  

 

Results 

Barlow (2003) provides information on the search effort, number of species 

sighted, and associated line-transect abundance estimates for the 1991-2001 

shipboard surveys.  Similar information on the 1991-1992 aerial surveys is provided 

by Forney et al. (1995).  The number of segments and sightings used to build and 

evaluate the predictive models also reflected the availability of satellite-derived data 

for each of the species-specific spatial resolutions (Table 4.2).  The five species we 

used for model evaluation were selected based on sample size; to support a rank 

analysis we wanted an average of at least 2 sightings per segment (i.e., greater than 

11 sightings during the aerial surveys for which SST data were available).  As 

mentioned previously, small sample sizes combined with geographic stratification 

limited the power of our rank analysis.  The five species used in our analysis 

included one warm-temperate/tropical species (short-beaked common dolphin), three 
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cold-temperate species (Pacific white-sided dolphin, northern right whale dolphin, 

Dall’s porpoise), and a cosmopolitan species (Risso’s dolphin).  Long-beaked 

common dolphin (Delphinus capensis) cannot be reliably differentiated from the 

short-beaked variety during aerial surveys so predictions were made for the entire 

genus; however, the majority of these Delphinus spp. sightings likely were short-

beaked common dolphins, because most of the sightings were made beyond the 

nearshore range of D. capensis (Heyning and Perrin 1994).  As noted previously, 

highly migratory species were excluded from the analysis a priori.  The harbor 

porpoise (Phocoena phocoena) and bottlenose dolphin (Tursiops truncatus) also 

were excluded from this analysis because they typically occur within a narrow 

coastal band and are generally assessed using focused surveys (Forney et al. 1991; 

Carretta et al. 1998).  Other species encountered during the aerial surveys had too 

few sightings to support a rank analysis (i.e., an average of at least two sightings per 

stratum).   

Results of the pseudo-jackknife, cross validation analyses are summarized in 

Becker et al. (2007, Chapter 3).  For a given species, the variables and associated 

functional forms included in the final GAM were similar to those in the final GLM 

for both the encounter rate and group size models.  This similarity was particularly 

evident for those variables having the greatest effect (identified by the largest change 

in the mean response) (Table 4.3; Appendix A).  The weighted f(0) estimates that we 

used to account for differences in group size in our density estimates are provided  in 

Table 4.4.     
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Inspection of the last three rows of Table 4.5 indicates that for three of the 

five species (common dolphin, northern right whale dolphin, and Dall’s porpoise), 

one or both models’ ability to predict winter densities exceeded that of the null 

model.  The relative abilities of GAMs and GLMs to predict ranked estimates from 

the novel aerial dataset varied among species, with the biggest GAM vs. GLM 

difference noted for Dall’s porpoise (Table 4.5).  Visual comparisons of predicted 

relative densities vs. observed sightings from the aerial surveys reveal similar 

differences between GAMs and GLMs (Figure 4.5); however, the smoothed density 

maps suggest that the predictions were better than indicated by the rank correlation 

tests.  

  

Discussion 
 
Performance of GAMs vs. GLMs 

In general, GAMs and GLMs produced similar results when used for 

predictive habitat modeling with a few exceptions.  The encounter rate GAM and 

GLM for northern right whale dolphin included identical terms (Table 4.3, Appendix 

A); however, when the polynomial SST function in the GLM was applied to the 

winter aerial survey data, which included colder water temperatures than the original 

dataset used to build the models, the fitted curve in the GLM predicted an unrealistic 

number of encounters (295,697).  The GAM smooth function predicted high values, 

but, based on past survey data (Barlow 2003), these were not unrealistic (82 

encounters).  Overall results of the Spearman rank correlation analysis indicate that 
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GAMs had better between-season predictive ability than GLMs (i.e., correlation was 

higher for total encounter rate, group size, and density predictions; Table 4.5), due in 

part to the poor performance of polynomials when predicting outside of the range of 

values used to build the models.  The apparent superior performance of the GAMs 

could also be due to the software platform used to build the models, as the 

predict.gam function included in S-PLUS includes a “safe prediction” algorithm 

(Chambers and Hastie 1991).  We used the predict.gam function for both the GAM 

and GLM predictions; however, because the smoothing functions are inherently 

more flexible than the polynomials, GAMs are more amenable to adjustment when 

fitted to new data.  Significant errors can result when relying on model predictions 

that have been extrapolated beyond the range of values used to fit the model, and 

ideally this should never be done.  This limitation is relevant to our ability to predict 

across seasons using species-environment models.  The datasets used for model 

building must include environmental data with values similar to those of the 

specified prediction period.  Off California, where variables such as SST vary 

interannually as much a seasonally, it is possible to build multi-year summer models 

that include the range of environmental conditions in winter.   

 

Seasonal predictive ability 

Individual models for common dolphin, northern right whale dolphin, and 

Dall’s porpoise provided increased ability to predict distribution patterns across 

seasons, while estimates based on a null model (observations from the summer 
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shipboard surveys) were better than the GAM and GLM predictions for Risso’s 

dolphin and Pacific white-sided dolphin.  Most of the models exhibiting seasonal 

predictive ability showed good model fit (Becker et al. 2007, Chapter 3), 

emphasizing the importance of testing the explanatory power of a model prior to 

using it to make predictions on a novel dataset.  These results were fairly consistent 

with results from a related study in which the same models were used to predict 

species density in summer/fall for the total shipboard study area (Becker et al. 2007, 

Chapter 3); the ratio of predicted/observed density estimates in that study for both 

model types was 0.900-0.998 for short-beaked common dolphin, 1.003-1.005 for 

Dall’s porpoise, 0.819-0.830 for northern right whale dolphin, 1.345 for Risso’s 

dolphin, and 0.665-0.674 for Pacific white-sided dolphin.  Species for which the 

ratio of predicted/observed densities approached one in that study are the same that 

exhibited between-season predictive capabilities in this study (i.e., short-beaked 

common dolphin, northern right whale dolphin, and Dall’s porpoise).  Not 

surprisingly, the species models whose predictions were greater than 34% different 

from observed estimates (Pacific white-sided dolphin and Risso’s dolphin) did not 

exhibit seasonal predictive capability as indicated by our rank analysis.  

A notable difference between our results and those of Becker et al. (2007, 

Chapter 3) was evident in the “ship model predicting ship data” ranked density 

estimates for Dall’s porpoise (Table 4.5).  All Dall’s porpoise models yielded similar 

density estimates for the total study area (all predictions were within 1% of density 

estimates derived from the observed shipboard data), indicating that the models are 
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robust when predicting over the large spatial scale of the entire survey region 

(Becker et al. 2007, Chapter 3).  However, when predictions were made for the 

geographically stratified regions in this study, estimates were poor, as indicated by 

the relatively low rank correlation coefficients (less than 0.43; Table 4.5).   Model 

results are often dependent on the scale at which data are collected and analyzed 

(Wiens 1989), and applying a model fitted with data from the entire study area to 

smaller spatial regions inherently includes the assumption that the factors 

determining density at small scales are the same as those at large scales (Gomez de 

Segura 2007).  The poor performance evident at smaller spatial scales also could be 

attributed to the range of environmental variability present within the subregions in 

comparison to the entire study area.  The models may have been able to capture 

distribution patterns over the study area given the wider range of variability, but 

were not able to capture finer-scale distribution patterns that have a more limited 

range of variability.  These observations highlight the challenge often faced by 

marine resource managers who require cetacean distribution information for small-

scale regions in order to evaluate the impacts of activities that are potentially harmful 

to cetaceans (e.g., Navy test and training activities); surveys often are conducted at 

larger spatial resolutions and predictions for these study areas may not be 

appropriate for smaller geographic scales.   

Because results varied by species, the models’ ability to predict seasonal 

distribution patterns and capture known species-environment relationships are 

discussed separately for each species below.   
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Short-beaked common dolphin.  Short-beaked and long-beaked common 

dolphins cannot be reliably distinguished during aerial surveys, so the predictions 

made from the shipboard models built with short-beaked common dolphin sightings 

were evaluated based on aerial survey sightings that may have included both species; 

however, given the nearshore range of long-beaked common dolphins (Heyning and 

Perrin 1994), most of the Delphinus spp. sightings likely were short-beaked common 

dolphins.  Predicted/observed density ratios for the total study area were fairly 

consistent for four different types of models, including the remotely sensed GAM 

and GLM considered in this study (Becker et al. 2007, Chapter 3), indicating model 

robustness.  When these models were used to predict relative winter densities for the 

six geographically stratified areas, however, the GAM and GLM produced very 

different results (Table 4.5).  This lack of robustness (results vary by model) at 

smaller spatial scales has been detected in other studies (Hedley and Buckland 2004; 

Ferguson et al. 2006). It is not clear why the GLM showed superior performance as 

compared to the GAM, because both the encounter rate and group size models 

included identical terms, and the functional forms were similar (Appendix A).   

Significant seasonal differences in distribution have been documented for 

common dolphins, based on a statistical comparison of numbers of animals north and 

south of Point Arguello, and inshore/offshore of the 2,000 m isobath (Forney and 

Barlow 1998).   The rank correlation test results suggest that the common dolphin 

GLMs were able to capture the variability in seasonal distribution.  A visual 

comparison of the GAM and GLM density predictions indicates that both models 
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were able to identify the inshore/southerly shift in distribution observed during 

winter 1991-92, although the GLM was more effective at capturing the pattern, as 

indicated by the relatively higher densities and greater extent predicted for the 

Southern California Bight (SCB; Figure 4.5a).  Both the GAM and GLM predictions 

were notably different than those for summer, where short-beaked common dolphins 

were predicted to occur well north of Point Arguello (Becker et al. 2007, Chapter 3). 

Risso’s dolphin.  The failure of the models to accurately predict seasonal 

distribution patterns of Risso’s dolphin suggests that the environmental variables 

used in this study are not effective at capturing distribution patterns for this species, 

as also noted in Becker et al. (2007, Chapter 3).  Other studies have found Risso’s 

dolphin to be associated with the continental slope and in regions with steep 

bathymetry (Dohl et al. 1978, 1983; Green et al. 1992; Baumgartner 1997, 2001); 

however, neither the slope nor zone variables were included in the final models for 

this species.  Risso’s dolphin sightings were most numerous in the SCB during both 

the summer ship surveys and winter aerial surveys, and animals also were observed 

off central California during both surveys.  A comparison of the abundance and 

distribution patterns of this species between the two periods indicated a significant 

increase in abundance during winter, but no significant difference in distribution 

within the study area (Forney and Barlow 1998).  However, during the summer ship 

surveys, Risso’s dolphins were also sighted in offshore waters of northern California, 

west of the aerial survey study area.  This species occurrence in habitats with very 

different oceanographic characteristics (i.e., waters of the SCB, California Current, 
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and offshore subtropical gyre) presents challenges to modeling habitat using broad 

environmental descriptors such as SST, as the models are not able to effectively 

differentiate among water masses.  

The relative distribution patterns produced by the GAM and GLM suggest 

that both models over-predicted densities north of Monterey Bay, where waters in 

the study area tend to be cooler (Figure 4.5b).  This is most likely due to the linear 

SST function in the group size models, which showed increasing group sizes with 

decreasing water temperatures (Appendix A).  The 1991-2001 shipboard survey data 

upon which the models were built included only one sighting of Risso’s’ dolphin in 

waters cooler than 14.5o C (in 1996 there was one sighting of 150 animals in 12o C 

waters).  This sighting was probably partially responsible for the models’ linear SST 

function, which in turn contributed to the predicted high densities in cool waters that 

were more prevalent in winter.  In order to get more reliable models for this species, 

additional survey data are needed in relatively cool waters, such as those experienced 

during a La Niña event.  Extending the analysis to include more northerly 

geographical areas might also be helpful in this regard. 

Pacific white-sided dolphin.  The modeled densities by stratum for the 

Pacific white-sided dolphin compared well to the shipboard summer data used to 

build the models, indicating good regional explanatory power.  The Spearman rank 

correlation coefficients were significant for encounter rate (r = 0.957), group size (r 

= 0.900), and density (r = 0.900), indicating that the predicted ranks matched very 

well with those estimated from the observed data.  The models failed to effectively 
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predict winter densities, however, as indicated by the rank correlation tests (Table 

4.5).  The lack of between-season predictive ability could be due in part to the small 

sample sizes available for both building the models and evaluating their predictive 

performance: 25 sightings from the summer shipboard surveys were used to build 

the models and only 15 sightings were available from the winter aerial surveys for 

the rank correlation analysis.  Visual inspection of the density plots for this species 

suggest that the models’ predictive ability was better than indicated by the rank 

correlation test, as relatively higher densities were predicted in the areas where 

Pacific white-sided dolphins were sighted during the 1991-92 aerial surveys (Figure 

4.5c).  These plots also show that highest densities were predicted for cool waters 

north of Cape Mendocino.  These are likely over-predictions due to the somewhat 

linear functions for SST in waters less than about 12o C, which were included in the 

encounter rate models for this species (Appendix A).  

The predictive ability of cetacean-environment models built with remotely 

sensed data may vary by habitat, because cloud cover is more prevalent in cool-

water regions off California, reducing the number of satellite data available.  In 

addition, cetacean-environment models are affected by the level of complexity of the 

oceanographic environment, because more data are required to parameterize models 

for species that inhabit diverse environments (Becker et al. 2007, Chapter 3).  Both 

of these factors affect models built for the Pacific white-sided dolphin, as this 

species occurs primarily in shelf and continental slope waters off California that are 

prone to coastal fog/cloud cover, and it inhabits complex oceanographic 
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environments (e.g., highly variable bathymetry, water temperature, etc.).  Ironically, 

more data are required to build models for this species but satellite data are more 

limited by cloud cover.  To increase the predictive ability of the Pacific white-sided 

dolphin models built with remotely sensed data, additional surveys in clear 

conditions are required.  Additional alternatives to help prevent data loss due to 

cloud cover include the collection of remote sensing data from the survey aircraft 

and the use of microwave radiometers.  

Northern right whale dolphin.  The GAMs for northern right whale dolphin 

exhibited consistently good predictive performance as indicated by the rank 

correlation tests (Table 4.5).  Despite the GLM’s unrealistic predictions for 

encounter rate (see “Performance of GAMs vs. GLMs” above), when evaluated 

based on relative density by stratum, the GLM predictions were better than those of 

the null model.  Forney and Barlow (1998) identified a statistically significant 

difference in the abundance of northern right whale dolphin between the summer and 

winter survey periods assessed in this study, with more animals present during the 

cold water period.  In addition, they found a significant difference in distribution of 

this species within the study area, and provided additional evidence for an influx of 

animals into the SCB in winter as noted previously by Leatherwood and Walker 

(1979) and Dohl et al. (1978).  Based on the results of the rank correlation tests, the 

models were able to effectively capture the relative distribution pattern of seasonal 

variability.  However, the extreme over-predictions in northern waters are shown 

clearly in the GLM, and to a lesser extent, the GAM density plots (Figure 4.5d).  
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Similar to the models for Risso’s dolphin and Pacific white-sided dolphin, the SST 

functions in the encounter rate models for northern right whale dolphin produced 

unreliable estimates in waters cooler than those included in the summer shipboard 

survey data.  In addition, although the models predicted moderately low levels of 

relative density within the SCB, they clearly did not capture the full extent of the 

pattern, as indicated by the concentration of sightings in the continental shelf and 

slope regions of the SCB during the 1991-92 aerial surveys.  In summary, while the 

models exhibited some predictive ability, more data collected over a range of 

oceanographic conditions are needed to make the models robust and allow them to 

capture seasonal patterns throughout the study area.   

Dall’s porpoise.  The encounter rate models for Dall’s porpoise exhibited the 

greatest difference in predictive power between GAM and GLM, and this was one of 

only two species for which the predictor variables included in the final models 

differed by more than one term (Table 4.3).  The GAM was more complex 

(additional terms and degrees of freedom), and included two variables that did not 

show up in the final GLM: CV(SST) and the categorical oceanographic zone 

variable.  The effect of CV(SST) on the mean response was minimal, while zone 

showed an effect opposite to that indicated by the depth function.  In this case, due to 

the high correlation between the depth and zone predictor variables, zone was 

included as noise in the GAM (Appendix A).  In some cases a second variable that 

indicates an opposite trend can be meaningful; however, zone was the last term to 

enter the model and it explained very little deviance (Becker et al. 2007, Chapter 3).  
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Dall’s porpoise are found in shelf, slope, and offshore waters (Morejohn 1979), but 

the majority (62%) of sightings during the 1991-92 aerial surveys were in waters 

with depths less than 2,000 m.  Functional forms for slope, SST, and Beaufort were 

similar in the two types of models.  However, the depth function was more linear in 

the GAM than in the GLM, predicting more encounters in shallow waters, consistent 

with encounter rate GAMs built with a subset of these data (Forney 2000).  The 

polynomial in the GLM had a broad maximum between approximately 1,900 and 

2,222 m, with encounters decreasing on either side, indicating that the GLM most 

likely overestimated encounters in deeper waters, and underestimated encounters in 

waters shallower than 1,900 m.   

Previous analyses of a portion of the cetacean sighting data used for this 

study (the 1991 shipboard survey data and the 1991-1992 aerial survey data) found a 

statistically significant seasonal difference in the distribution of Dall’s porpoise 

north and south of Point Arguello, documenting a southward shift during winter 

(Forney and Barlow 1998).  The GAMs were able to effectively capture this seasonal 

change in distribution, as indicated by the rank correlation test (Table 4.5).  Visual 

inspection of the density plots for this species suggests that the GLM actually was 

more effective at predicting an influx of animals south of Point Arguello during 

winter (Figure 4.5e).  A comparison of the GAM’s density predictions for winter 

(Figure 4.5e) to the same model’s density plot for summer (see Appendix B.f) 

provides clear evidence that the summer shipboard models effectively predicted 

winter distribution patterns for Dall’s porpoise; in summer, densities are highest 
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north of San Francisco, with few animals present in the SCB, while the winter 

predictions captured this species southerly shift in distribution as noted above.  

 

Caveats 

In many regions with clearly distinctive seasonal differences (e.g., polar 

regions), it would not be appropriate to use models built with summer data in an 

attempt to make winter predictions.  Off California, however, where interannual 

variability can mimic seasonal variability, it is possible for some species to build 

multi-year summer models that include the range of environmental conditions 

occurring in winter.  To be effective, the datasets used for model building must 

include environmental data with a range of values that overlap those of the specified 

prediction period.  As demonstrated here, significant errors can result when relying 

on model predictions that have been extrapolated beyond the range of values used to 

fit the model.  This is a critical issue for predicting across seasons using species-

environment models.  When the range of environmental variables from the two 

seasons overlapped, the models were able to capture the shifts in seasonal 

distribution patterns for three of the five species considered in this study. 

Across-season predictions are not appropriate for highly migratory species 

that are known to be absent from the study area in either the season used for model 

building or the season for which predictions are made, e.g., many baleen whales.  

The environmental variables used for modeling will not reflect the absence of 

species that move to different areas for seasonal breeding.  Social organization and 
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behavioral aspects of species ecology may also confound the cetacean-habitat 

modeling approach, particularly when attempting to predict across seasons. 

While autocorrelation is expected to be present in the sighting and 

environmental data used for this analysis, we did not examine it.  A primary goal of 

this study was to produce models that could be used to predict seasonal distribution 

patterns of cetaceans based on a set of environmental variables.  Predictive models 

are distinct from similar models used to test hypotheses, where the potential bias in 

variance estimates due to autocorrelation and inflated sample size can lead to 

incorrect conclusions regarding underlying mechanisms.  Autocorrelation does not 

severely bias the parameter estimates for the smooth functions (Neter et al. 1990), 

nor is the absence of autocorrelation a requirement for effective predictive modeling 

(Hamazaki 2004).  Nonetheless, the presence of autocorrelation in model residuals 

can affect variance estimation associated with the predictions.  Our predictive 

analysis was based on a comparison of ranked (not actual) density estimates, so we 

did not estimate variance in the predictions.  There are numerous sources of 

uncertainly associated with GAM predictions (Ferguson et al. 2006), and variance 

estimation is the subject of ongoing research. 

The pseudo-jackknife cross validation process used to select the final 

encounter rate and group size models was optimized for the summer survey data.  

Future modeling efforts aimed at predicting densities across seasons should consider 

allowing additional variables into the final models.  For example, variables that were 

included in some of the (n-1)-year models but did not make it into the final model 
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could be allowed in the list of predictors.  Their ability to predict across seasons 

might be better than suggested from the cross validation process based solely on 

summer data.  

The number of sightings available for our seasonal analysis was low, and 

there were inherent limitations in a rank correlation test that analyzed only six pairs 

of data.  The number of sighting data available for building the models has a large 

effect on their resulting predictive ability (Becker et al. 2007, Chapter 3), as does the 

number of sightings available to assess model performance.  For example, 21 Pacific 

white-sided dolphin groups were sighted during the 1991-1992 aerial surveys, and 

only 15 of these had corresponding satellite-derived SST data.  When the 15 

sightings were stratified for the geographic analysis, one stratum contained only one 

sighting of 77 animals, which had a large effect on the group size rankings.   

Future studies should investigate the predictive power of SST averaged over 

greater spatial and temporal resolutions (Becker et al. 2007, Chapter 3).  In addition, 

SST data obtained from newer microwave radiometers will help prevent data loss 

due to cloud cover and should be evaluated in future studies.   

We evaluated seasonal predictive ability based on correlations between the 

models’ predicted density ranks and those calculated from the aerial survey data, 

inherently including the assumption that the observed data are the “truth.”  There are 

many sources of error associated with collecting and analyzing line-transect data 

(Ferguson et al. 2006), including measurement error associated with the number and 

location of sightings.  Theoretically, the models could correctly predict a higher 
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density in one of the strata, but by chance no animals were observed during the aerial 

surveys. 

 

Conclusions 

Results of a simple rank correlation test suggest that, when predicting across 

seasons, geographic patterns of species density were captured to some extent for at 

least three of the five species considered.  The models that exhibited seasonal 

predictive capability were for species known to have significantly different patterns 

of seasonal distribution in the study area.   These results suggest that, although the 

processes of interannual and seasonal variability are different, interannual variability 

in the environmental parameters can be large enough to explain some of the variation 

in the seasonal distribution patterns of cetaceans in the waters off California.  The 

poor seasonal predictive performance evident for some of the models could be due in 

part to the small number of sightings available for building the models.  More 

importantly, models need to be developed using environmental parameters that 

include the full range of conditions for the temporal/spatial period they are 

predicting.  Future modeling efforts, particularly those that include remotely sensed 

environmental variables, require additional data to refine and improve the predictive 

ability of species-environment models.  For the California study area specifically, 

additional survey data collected during the winter or during strong La Niña episodes 

are needed to capture seasonal distribution patterns and produce more realistic 

density estimates for cool water conditions.  For some species, this might also be 
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achieved by expanding the study area to include a broader range of environmental 

conditions.    

Ideally, cetacean survey data would be collected for the specific time period 

of interest and cetacean-habitat models built accordingly.  However, poor weather 

conditions and high sea states off California during winter prohibit the completion of 

comprehensive shipboard surveys.  Although aerial surveys have been used to 

collect data during the winter, there are drawbacks associated with both the 

collection and analysis of these data.  First, safety issues and fuel capacity usually 

prevent surveys of large areas offshore and limit the size of the study area that can be 

covered.  In addition, availability bias is much greater for aerial surveys as compared 

to ship surveys, and correction factors to account for this bias have been developed 

for only a few species.  Therefore, more aerial survey data are required in order to 

obtain a sufficient number of sightings for most species.  Ship surveys more readily 

provide the sample sizes required for modeling, and if additional summer surveys 

could capture the full range of seasonal environmental variability, results from this 

study suggest that variation in the seasonal distribution patterns of some cetacean 

species off California could be predicted.  In lieu of actual winter survey data from 

recent years, winter densities currently are estimated from summer shipboard 

surveys without consideration of environmental data (i.e., our “null” model).  

Assuming adequate summer data are available, across-season predictions from 

cetacean-habitat models will represent an improvement to the null model for some 

species.   
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A comparison of within-season (summer/fall) density predictions made for 

the total shipboard study area of approximately 818,000 km2 to relative density 

predictions for six geographically stratified areas within the aerial study region 

(approximately 264,000 km2) reveals apparent differences in the predictive ability of 

models at different spatial scales.  Care should be taken when estimating cetacean 

abundance for spatial resolutions that are smaller then the resolutions at which the 

models were built.  Overall results of the rank correlation tests indicate that GAMs 

had better between-season predictive ability than GLMs, due in part to unrealistic 

values predicted by polynomials when applied to data outside of the range used to 

build the models.  Ideally, predictions should not be made outside of the variable 

range used for model development. 

 For some species, such as Risso’s dolphin, simple oceanographic measures 

like SST do not appear to capture the species-environment relationships sufficiently 

to predict species densities.  Ongoing analyses to develop prey indices may improve 

predictive models, but their use requires intensive sampling and data processing, and 

they have limited use in generating predictions for novel time periods or in near real-

time.  Remotely-sensed environmental predictor variables are available in near real-

time at a range of spatial and temporal scales, and are critical for models that must 

rely on aerial survey data (sensors can be placed on survey aircraft but measurements 

would not be as synoptic as those provided by satellite data).  Risso’s dolphins occur 

in habitats with very different oceanographic characteristics (i.e., waters of the SCB, 

California Current, and offshore North Pacific gyre), and if proxy measures for 
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different water masses could be developed based on remotely sensed variables, our 

predictive modeling capability would likely improve.  Latitude and longitude 

interaction terms have been used in predictive models to capture differences in 

location of water masses with similar properties (Forney 2000); however, a water 

mass proxy variable would eliminate the need to include fixed geographic points in 

habitat models and thus enhance their use for prediction in dynamic environments.   

Future analyses should focus on increasing our ecological understanding of cetacean 

prey distributions, and using this knowledge to develop more effective proxy 

measures from satellite-derived data.   
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Table 4.1.  Summary of satellite-derived sea surface temperature (SST) and 
CV(SST) spatial resolutions with the greatest predictive ability for encounter rate 
and group size GAMs and GLMs (from Becker et al. 2007, Chapter 3).  Numbers 
refer to the number of pixels included in the resolution.  The spatial resolutions 
tested included 1, 4, 9, 16, 25, and 36 pixel boxes, corresponding to 5.55-33.3 km 
boxes (i.e., 30.8 – 1,108.9 km2).    

 
Encounter Rate Group Size  

Species SST CV(SST) SST CV(SST) 
Short-beaked common dolphin 36 36 36 25 
Risso’s dolphin 9 16 36 16 
Pacific white-sided dolphin 36 9 36 9 
Northern right whale dolphin 36 9 36 36 
Dall’s porpoise 25 36 36 36 

 
 
 
 
 
Table 4.2.  Total number of segments and sightings used to build the predictive 
models based on data from the 1991, 1993, 1996, and 2001 shipboard surveys of 
California waters in summer/fall (“shipboard”), and the number of segments and 
sightings used to evaluate the models based on data from the 1991 and 1992 aerial 
surveys of California waters in winter/spring (“aerial”).  The numbers are based on 
segments for which remotely sensed SST data were available for species-specific 
resolutions (see Table 4.1 above) and reflect sightings in Beaufort sea states 0-5 that 
were used in this analysis. 

     
Species Survey 

 shipboard aerial 
 segments sightings segments sightings
Short-beaked common dolphin 6,054 316 2,533 31 
Risso’s dolphin 6,054 70 2,533 14 
Pacific white-sided dolphin 5,500 25 2,324 15 
Northern right whale dolphin 6,030 40 2,533 23 
Dall’s porpoise 5,928 179 2,480 37 

 



 

 212

Table 4.3.  Comparison of the variables included in the final encounter rate and 
group size GAMs and GLMs built with remotely sensed SST and CV(SST).  Linear 
fits are represented by “L1”.  Smoothing splines (GAMs) are represented by "S#" 
and polynomial (GLMs) are represented by “P#”, where # is the associated degrees 
of freedom.  Note that zone is a categorical variable.  For those species where the 
GAM and GLM included different predictor variables and/or degrees of freedom, the 
variable codes are shown in bold.  
 

Encounter Rate Models Predictor Variables 
Species  Zone Depth Slope SST CV(SST) Beaufort 
Common dolphin GAM L1   S3  L1 
 GLM L1   P3  L1 
        
Risso's dolphin GAM  L1      
 GLM  L1      
        
Pacific white-sided GAM L1 S3   S3 S3   
dolphin GLM L1 P2 L1 P3 L1   
        
Northern right GAM L1   S3  S3 
whale dolphin GLM L1   P3  P3 
        
Dall's porpoise GAM L1 S3 S3 S3 S2 S3 
 GLM   P2 P3 P2   L1 
          
Group Size Models  Predictor Variables 
Species  Zone Depth Slope SST CV(SST) Beaufort 
Common dolphin GAM    L1  L1 
 GLM    L1  L1 
        
Risso's dolphin  GAM    L1    
 GLM    L1    
        
Pacific white- GAM      L1 
sided dolphin GLM      L1 
        
Northern right GAM    L1 L1   
whale dolphin GLM    L1 L1 P2 
        
Dall's porpoise GAM   L1   L1 
 GLM   L1   L1 

 



 

 213

Table 4.4.  Summary of the weighted effective strip width (ESW = 1/ f(0)) estimates 
used to calculate observed and predicted densities for this analysis.  The original 
values are those estimated from all the survey data (Forney and Barlow 1998, 
Barlow 2003).  The weighted values were based on the proportion of groups within 
each group size range observed during the combined surveys within each geographic 
stratum or combined geographic stratum resulting from the K-S tests.  Survey: (A) 
1991-2001 ship surveys, and (B) 1991-1992 aerial surveys.   
 
(A.) SHIP SURVEY 

 
Species 

 
Group size 

Original 
ESW 

 
Weighted ESW by Strata 

   1A 1B 1C 2A 2B 2C 
Short-beaked common  1-20 0.50 
dolphin 21-100 1.24 
 100+ 1.84 

 
1.48 

 
1.48 

 
1.24 

 
1.48 

 
1.48 

 
1.24 

Risso’s dolphin 1-20 1.37 
 20+ 2.18 

 
1.68 

 
1.68 

 
1.68 

 
1.68 

 
1.68 

 
1.68 

Pacific white-sided  1-20 0.50 
dolphin 21-100 1.24 
 100+ 1.84 

 
0.71 

 
0.71 

 
1.16 

 
0.71 

 
0.71 

 
1.16 

Northern right whale  1-20 0.50 
dolphin 21-100 1.24 
 100+ 1.84 

 
0.59 

 
0.59 

 
0.59 

 
0.59 

 
0.59 

 
0.59 

Dall’s porpoise1 all 0.82 0.82 0.82 0.82 0.82 0.82 0.82 
 

(B.) AERIAL SURVEY 
 

Species 
Group size Original 

ESW 
 

Weighted ESW by Strata 
   1A 1B 1C 2A 2B 2C 
Short-beaked common  1-10 0.21 
dolphin 10+ 0.35 

 
0.32 

 
0.32 

 
0.32 

 
0.32 

 
0.32 

 
0.32 

         
Risso’s dolphin 1-10 0.21 
 10+ 0.35 

 
0.29 

 
0.29 

 
0.29 

 
0.29 

 
0.29 

 
0.29 

         
Pacific white-sided  1-10 0.50 
dolphin 10+ 1.24 

 
1.05 

 
1.05 

 
1.05 

 
1.05 

 
1.05 

 
1.05 

         
Northern right whale  1-10 0.50 
dolphin 10+ 1.24 

 
0.67 

 
0.67 

 
0.67 

 
0.67 

 
0.67 

 
0.67 

         
Dall’s porpoise1 all 0.21 0.21 0.21 0.21 0.21 0.21 0.21 

 

1For Dall’s porpoise, the original estimates were applied to effort in Beaufort sea states 0-2.  
For this analysis they were applied to effort in Beaufort sea states 0-5 to maintain the 
maximum possible sample size for modeling.  This resulted in a downward bias in our 
density estimates. 
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Table 4.5.  Summary of Spearman rank correlation coefficients.  The "Ship GAM" 
and "Ship GLM" are the models built with the summer/fall shipboard data.  The 
"Ship (NULL)" are the values estimated from the summer/fall shipboard surveys 
using standard line-transect methods in the absence of environmental data.  The 
"Ship Obs" and "Air Obs" data are the summer/fall shipboard observed and 
winter/spring aerial observed values.  For example, the “Ship GAM” and “Ship 
GLM” models predicting on the “Ship Obs” data reflect results obtained when the 
models were used to predict data from the shipboard surveys upon which they were 
built (essentially a measure of goodness of fit).  The critical value at α = 0.05 (one-
tailed test) with five degrees of freedom is rcrit = 0.829 (i.e., values are significant if 
larger).  Significant correlations are marked with an asterisk (*), and cases for which 
the predicted aerial values did better than the null model are shown in bold. 
 

Correlations Species 
   

Model Data 
Common 
dolphin 

Risso's 
dolphin 

Pacific 
white- 

sided dolphin 

Northern 
right 
whale 

dolphin 
Dall's 

porpoise 
Encounter Rate:       

Ship GAM Ship Obs 0.429 0.657 *0.957 *0.843 *0.829 
Ship GLM Ship Obs 0.486 0.657 *0.957 *0.957 0.771 

Ship (NULL) Air Obs 0.214 0.014 0.257 0.314 0.714 
Ship GAM Air Obs 0.129 -0.443 0.014 0.729 0.886 
Ship GLM Air Obs 0.500 -0.443 0.014 0.543 -0.200 

  
 Group size:        

Ship GAM Ship Obs *0.886 -0.029 *0.900 *0.957 0.086 
Ship GLM Ship Obs *0.886 -0.029 *0.900 *0.957 0.029 

Ship (NULL) Air Obs 0.500 0.700 0.486 0.257 -0.371 
Ship GAM Air Obs 0.871 0.357 0.014 0.557 0.429 
Ship GLM Air Obs 0.729 0.357 0.129 0.714 0.086 

 
Density:        
Ship GAM Ship Obs *0.829 0.086 *0.900 *0.843 0.429 
Ship GLM Ship Obs *0.829 0.086 *0.900 *0.957 0.371 

Ship (NULL) Air Obs 0.214 0.129 0.257 0.371 0.200 
Ship GAM Air Obs 0.129 -0.414 0.014 0.786 0.543 
Ship GLM Air Obs 0.500 -0.414 0.129 0.486 -0.486 
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Figure 4.1.  Completed transects for the shipboard line-transect surveys 
conducted late July through early December 1991, 1993, 1996, and 2001 off 
California in Beaufort sea states of 0-5.  The study area encompasses 
approximately 818,000 km2. One degree of latitude = 111 km. 
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Figure 4.2.  Completed transects for the aerial line-transect surveys 
conducted off California in March-April 1991 and February-April 1992 in 
Beaufort sea states of 0-5.  The light gray line west and offshore of the aerial 
study area marks the full study area used to develop the summer models (i.e., 
the outer boundary of the shipboard line-transect study area).  One degree of 
latitude = 111 km. 
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Figure 4.3.  Steps for evaluating predictive ability across seasons. 
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Figure 4.4.  Geographic strata used for Spearman rank correlation tests. 



 

 219

Figure 4.5. Predicted densities for winter/spring based on winter/spring 
environmental data and on summer/fall shipboard models, for (a) common 
dolphin, (b) Risso’s dolphin, (c) Pacific white-sided dolphin, (d) northern 
right whale dolphin, and (d) Dall’s porpoise.  Predicted values were 
smoothed using inverse distance weighting (see Methods for more details).  
Colors indicate relative density (i.e., darker = higher).  Black dots show 
winter/spring sighting locations. 
a. 

 
 
b. 
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c. 

 
 
 
d. 

 
 
 

 



 

 221

e. 
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Appendix A 

 

Shapes of the functional forms of the predictor variables included in the final 

encounter rate and group size generalized additive and generalized linear models for 

(a) striped dolphin, (b) short-beaked common dolphin, (c) Risso’s dolphin, (d) 

Pacific white-sided dolphin, (e) northern right whale dolphin, (f) Dall’s porpoise, (g) 

sperm whale, (h) fin whale, (i) blue whale, and (j) humpback whale.  Functions are 

shown for models built with remotely sensed (1) and  in situ (2) sea surface 

temperature (SST) and coefficient of variation (CV) of SST data.  Models were 

constructed with both linear terms and smoothing splines (s) for the generalized 

additive models (GAMs) or polynomials (poly) for the generalized linear models 

(GLMs) having up to three degrees of freedom.  The y-axes represent the smoothing 

spline or polynomial function.  Degrees of freedom for nonlinear fits are noted in the 

parentheses on the y-axis.  Zero on the y-axes corresponds to no effect of the 

predictor variable on the estimated response variable (encounter rate or group size).  

Functions have been scaled relative to the variable having the largest y-axis range 

that was not influenced by outliers.  Data points for each variable are indicated by 

the tick marks above the x axis.  The dashed lines reflect 2x standard error bands 

(i.e., 95% confidence interval).  Zone was modeled as a categorical variable defined 

roughly by water depth: 1 = shelf (waters from the coast to 200 m deep), 2 = slope 

(waters between 200 m and 2,000 m), and 3 = abyssal plain (waters deeper than 

2,000 m).   
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(a.1) Striped dolphin 
 
Encounter rate GAM built with remotely sensed data 
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Encounter rate GLM built with remotely sensed data 
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Striped dolphin (continued) 
 
 
Group size GAM built with remotely sensed data 
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Group size GLM built with remotely sensed data 
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(a.2) Striped dolphin 

Encounter rate GAM built with in situ data 
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Encounter rate GLM built with in situ data 
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Striped dolphin (continued) 
 
 
Group size GAM built with in situ data 
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(b.1) Short-beaked common dolphin 
 
Encounter rate GAM built with remotely sensed data 
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Encounter rate GLM built with remotely sensed data 
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Short-beaked common dolphin (continued) 
 
Group size GAM built with remotely sensed data 
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Group size GLM built with remotely sensed data 
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(b.2) Short-beaked common dolphin 
 
Encounter rate GAM built with in situ data 
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Encounter rate GLM built with in situ data 
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Short-beaked common dolphin (continued) 
 
 
Group size GAM built with in situ data 
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Group size GLM built with in situ data 
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(c.1) Risso’s dolphin 
 
 
Encounter rate GAM built with remotely sensed data 
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Encounter rate GLM built with remotely sensed data 
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Risso’s dolphin (continued) 
 
Group size GAM built with remotely sensed data 
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Group size GLM built with remotely sensed data 
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(c.2) Risso’s dolphin 
 
 
 
Encounter rate GAM built with in situ data 
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Encounter rate GLM built with in situ data 
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Risso’s dolphin (continued) 
 
 
Group size GAM built with in situ data 
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Group size GLM built with in situ data 
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(d.1) Pacific white-sided dolphin 
 
 
Encounter Rate GAM built with remotely sensed data 
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Pacific white-sided dolphin (continued) 
 
Encounter Rate GLM built with remotely sensed data 
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Pacific white-sided dolphin (continued) 
 
 
Group size GAM built with remotely sensed data 
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Group size GLM built with remotely sensed data  
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(d.2) Pacific white-sided dolphin 
 
 
Encounter rate GAM built with in situ data 
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Encounter rate GLM built with in situ data 
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Pacific white-sided dolphin (continued) 
 
Group size GAM built with in situ data 
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Group size GLM built with in situ data 
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(e.1) Northern right whale dolphin 
 
 
Encounter rate GAM built with remotely sensed data 
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Northern right whale dolphin (continued) 
 
Encounter rate GLM built with remotely sensed data 
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Northern right whale dolphin (continued) 
 
 
Group size GAM built with remotely sensed data 
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Group size GLM built with remotely sensed data 
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(e.2) Northern right whale dolphin 
 
 
Encounter rate GAM built with in situ data 
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Northern right whale dolphin (continued) 
 
 
Encounter rate GLM built with in situ data 
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Northern right whale dolphin (continued) 
 
 
Group size GAM built with in situ data 
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Group size GLM built with in situ data 
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(f.1) Dall’s porpoise 
 
 
Encounter rate GAM built with remotely sensed data  
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Dall’s porpoise (continued) 
 
Encounter rate GLM built with remotely sensed data 
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Dall’s porpoise (continued) 
 
 
Group size GAM built with remotely sensed data 
 
 

0.00 0.05 0.10 0.15

Slope

-3
-2

-1
0

1
2

   
 s

lo
pe

0 1 2 3 4 5

Beaufort sea state

-3
-2

-1
0

1
2

3

   
  b

ea
uf

 
 
 
 
 
Group size GLM built with remotely sensed data 
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(f.2) Dall’s porpoise 
 
 
Encounter rate GAM built with in situ data 
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Dall’s porpoise (continued) 
 
 
Encounter rate GLM built with in situ data 
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Dall’s porpoise (continued) 
Group size GAM built with in situ data 
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Group size GLM built with in situ data 
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(g.1) Sperm whale 
 
 
 
Encounter rate GAM built with remotely sensed data 
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Encounter rate GLM built with remotely sensed data 
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Sperm whale (continued) 
 
Group size GAM built with remotely sensed data 
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(g.2) Sperm whale 
 
 
Encounter rate GAM built with in situ data 
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Encounter rate GLM built with in situ data 
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Sperm whale (continued) 
 
 
Group size GAM built with in situ data 
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(h.1) Fin whale 
 
 
Encounter rate GAM built with remotely sensed data 
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Encounter rate GLM built with remotely sensed data 
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Fin whale (continued) 
 
Group size GAM built with remotely sensed data 
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Group size GLM built with remotely sensed data 
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(h.2) Fin whale 
 
 
Encounter rate GAM built with in situ data 
 
 

-1
0

-8
-6

-4
-2

0
2

4
zo

ne

1 2 3

Zone 0.00 0.02 0.04 0.06 0.08
CV(SST)

-6
-4

-2
0

2
C

V
(S

ST
)

10 12 14 16 18 20 22
SST (degrees C)

-8
-6

-4
-2

0
2

s(
ss

t, 
3)

0 1 2 3 4 5
Beaufort sea state

-4
-2

0
2

4
be

au
f

 
 
 
 
Encounter rate GLM built with in situ data 
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Fin whale (continued) 
 
 
Group size GAM built with in situ data 
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(i.1) Blue whale 
 
 
Encounter rate GAM built with remotely sensed data 
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Encounter rate GLM built with remotely sensed data 
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Blue whale (continued) 
 
Group size GAM built with remotely sensed data 
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(i.2) Blue whale 
 
 
Encounter rate GAM built with in situ data 
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Blue whale (continued) 
 
 
Group size GAM built with in situ data 
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(j.1) Humpback whale 
 
 
Encounter rate GAM built with remotely sensed data 
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Encounter rate GLM built with remotely sensed data 
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Humpback whale (continued) 
 
Group size GAM built with remotely sensed data 
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Group size GLM built with remotely sensed data 
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(j.2) Humpback whale 
 
 
 
Encounter rate GAM built with in situ data 
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Humpback whale (continued) 
 
 
Encounter rate GLM built with in situ data 
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Humpback whale (continued) 
 
 
Group size GAM built with in situ data 
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Appendix B 
 
Predicted relative density estimates from the generalized additive and generalized 

linear models built with remotely sensed and in situ data for (a) striped dolphin, (b) 

short-beaked common dolphin, (c) Risso’s dolphin, (d) Pacific white-sided dolphin, 

(e) northern right whale dolphin, (f) Dall’s porpoise, (g) sperm whale, (h) fin whale, 

(i) blue whale, and (j) humpback whale.  Density estimates for each segment were 

smoothed on a grid resolution of approximately 12 km using inverse distance 

weighting interpolation to the second power in Surfer software (version 8).  The 

same species-specific relative density scale was used for all models to enable a 

comparison between data (remotely sensed and in situ) and model type (GAM and 

GLM).  Models with obvious outliers were scaled so that differences in predicted 

densities at lower levels were visible.  Black dots show sighting locations. 
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